Spark でオブジェクトをシリアル化して HDFS に保存する方法の詳細な説明

零下一度
リリース: 2017-06-17 11:42:07
オリジナル
2311 人が閲覧しました

この記事では主に、Java の Spark で オブジェクトのシリアル化 を HDF に保存することに関する関連情報を紹介します。必要な方は、

Java の Spark でオブジェクトを HDF にシリアル化する

要約: Spark アプリケーションでよく遭遇するものを参照してください。 JAVA オブジェクト、特に MLlib を使用して計算された一部の モデル はシリアル化され、HDFS に保存され、モデルが再利用できるようにする必要があります。次の例は、Spark が環境内の Hbase からデータを読み取り、生成することを示しています。 word2vec モデルを作成し、hdfs に保存します。

これ以上ナンセンスではなく、spark1.4 + hbase0.98


import org.apache.spark.storage.StorageLevel
import scala.collection.JavaConverters._
import java.io.File
import java.io.FileInputStream
import java.io.FileOutputStream
import java.io.ObjectInputStream
import java.io.ObjectOutputStream
import java.net.URI
import java.util.Date
import org.ansj.library.UserDefineLibrary
import org.ansj.splitWord.analysis.NlpAnalysis
import org.ansj.splitWord.analysis.ToAnalysis
import org.apache.hadoop.fs.FSDataInputStream
import org.apache.hadoop.fs.FSDataOutputStream
import org.apache.hadoop.fs.FileSystem
import org.apache.hadoop.fs.FileUtil
import org.apache.hadoop.fs.Path
import org.apache.hadoop.hbase.client._
import org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor, TableName}
import org.apache.hadoop.hbase.filter.FilterList
import org.apache.hadoop.hbase.filter.PageFilter
import org.apache.hadoop.hbase.filter.RegexStringComparator
import org.apache.hadoop.hbase.filter.SingleColumnValueFilter
import org.apache.hadoop.hbase.filter.CompareFilter.CompareOp
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
import org.apache.hadoop.hbase.protobuf.ProtobufUtil
import org.apache.hadoop.hbase.util.{Base64, Bytes}
import com.feheadline.fespark.db.Neo4jManager
import com.feheadline.fespark.util.Env
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.rdd._
import org.apache.spark.mllib.feature.{Word2Vec, Word2VecModel}
import scala.math.log
import scala.io.Source

object Word2VecDemo {

 def convertScanToString(scan: Scan) = {
  val proto = ProtobufUtil.toScan(scan)
  Base64.encodeBytes(proto.toByteArray)
 }

 def main(args: Array[String]): Unit = {
  val sparkConf = new SparkConf().setAppName("Word2Vec Demo")
  sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
  sparkConf.set("spark.kryoserializer.buffer", "256m")
  sparkConf.set("spark.kryoserializer.buffer.max","2046m")
  sparkConf.set("spark.akka.frameSize", "500")
  sparkConf.set("spark.rpc.askTimeout", "30")
  

  val sc = new SparkContext(sparkConf)
  val hbaseConf = HBaseConfiguration.create()
  hbaseConf.set("hbase.zookeeper.quorum", "myzookeeper")

  hbaseConf.set(TableInputFormat.INPUT_TABLE, "crawled")

  val scan = new Scan()
  val filterList:FilterList = new FilterList(FilterList.Operator.MUST_PASS_ALL)
  
  val comp:RegexStringComparator = new RegexStringComparator(""".{1500,}""")
  
  val articleFilter:SingleColumnValueFilter = new SingleColumnValueFilter(
  "data".getBytes,
  "article".getBytes,
  CompareOp.EQUAL,
  comp
  )
  
  filterList.addFilter(articleFilter)
  filterList.addFilter(new PageFilter(100))
  
  scan.setFilter(filterList)
  scan.setCaching(50)
  scan.setCacheBlocks(false)
  hbaseConf.set(TableInputFormat.SCAN,convertScanToString(scan))

  val crawledRDD = sc.newAPIHadoopRDD(
   hbaseConf,
   classOf[TableInputFormat],
   classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],
   classOf[org.apache.hadoop.hbase.client.Result]
  )
 
  val articlesRDD = crawledRDD.filter{
   case (_,result) => {
     val content = Bytes.toString(result.getValue("data".getBytes,"article".getBytes))
     content != null
   }
  }

  val wordsInDoc = articlesRDD.map{
   case (_,result) => {
     val content = Bytes.toString(result.getValue("data".getBytes,"article".getBytes))
     if(content!=null)ToAnalysis.parse(content).asScala.map(_.getName).toSeq
     else Seq("")
   }
  }
  
  val fitleredWordsInDoc = wordsInDoc.filter(_.nonEmpty)
  
  val word2vec = new Word2Vec()
  val model = word2vec.fit(fitleredWordsInDoc)
  
  //---------------------------------------重点看这里-------------------------------------------------------------
  //将上面的模型存储到hdfs
  val hadoopConf = sc.hadoopConfiguration
  hadoopConf.set("fs.defaultFS", "hdfs://myhadoop:9000/")
  val fileSystem = FileSystem.get(hadoopConf)
  val path = new Path("/user/hadoop/data/mllib/word2vec-object")
  val oos = new ObjectOutputStream(new FSDataOutputStream(fileSystem.create(path)))
  oos.writeObject(model)
  oos.close
  
  //这里示例另外一个程序直接从hdfs读取序列化对象使用模型
  val ois = new ObjectInputStream(new FSDataInputStream(fileSystem.open(path)))
  val sample_model = ois.readObject.asInstanceOf[Word2VecModel]
  
  /*
  * //你还可以将序列化文件从hdfs放到本地, scala程序使用模型
  * import java.io._
  * import org.apache.spark.mllib.feature.{Word2Vec, Word2VecModel}
  * val ois = new ObjectInputStream(new FileInputStream("/home/cherokee/tmp/word2vec-object"))
  * val sample_model = ois.readObject.asInstanceOf[Word2VecModel]
  * ois.close
  */
  //--------------------------------------------------------------------------------------------------------------
 }
}
ログイン後にコピー
を直接貼り付けてください。

以上がSpark でオブジェクトをシリアル化して HDFS に保存する方法の詳細な説明の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

関連ラベル:
ソース:php.cn
このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
人気のチュートリアル
詳細>
最新のダウンロード
詳細>
ウェブエフェクト
公式サイト
サイト素材
フロントエンドテンプレート