jqueryにおける数種類のデータの使用例まとめ
この記事では主に、jQuery でよく使われるいくつかのデータ処理メソッドの インスタンス紹介 を紹介し、初心者向けにいくつかの提案と参考情報を提供します。
1.clearQueue()
从序列中删除仍未运行的所有项目 .clearQueue(queueName) $("div").clearQueue();//清空队列
2. .data()
選択した要素にデータを追加する、または選択した要素からデータを取得する
$(selector).data(name)//如果没有规定名称,则该方法将以对象的形式从元素中返回所有存储的数据 $(selector).data(name,value)向被选元素附加数据 $("#btn1").click(function(){ $("div").data("greeting", "Hello World"); }); $("#btn2").click(function(){ alert($("div").data("greeting")); }); //向元素附加数据,然后取回该数据
3. .dequeue()
のシーケンスを実行します。一致する要素 次の関数
.dequeue(queueName) $("div").queue(function () { $(this).toggleClass("red"); $(this).dequeue(); });//使用 dequeue() 终止一个自定义的队列函数
4. jQuery.hasData()
要素に関連付けられた jQuery データがあるかどうかを検出します
jQuery.hasData(element)//可选。需要检查其数据的 DOM 元素 $(function(){ var $p = jQuery("p"), p = $p[0]; $p.append(jQuery.hasData(p)+" "); /* false */ jQuery.data(p, "testing", 123); $p.append(jQuery.hasData(p)+" "); /* true */ jQuery.removeData(p, "testing"); $p.append(jQuery.hasData(p)+" "); /* false */ });//在元素上设置数据,然后查看 hasData 的结果
Query.hasData() メソッドは、jQuery を使用して要素に現在 jQuery データ セットがあるかどうかを検出します.data() 値。要素に関連するデータがない場合 (データ オブジェクトがまったく存在しないか、データ オブジェクトが空である場合)、メソッドは false を返し、それ以外の場合は true を返します
jQuery.hasData(element) の主な利点は、次のような場合です。データ オブジェクトが存在しない場合、データ オブジェクトは作成されず、要素に関連付けられません。対照的に、jQuery.data(element) は常に呼び出し元にデータ オブジェクトを返します。データ オブジェクトが以前に存在しない場合は、
.queue(queueName)//字符串值,包含序列的名称。默认是 fx, 标准的效果序列 function showIt() { var n = div.queue("fx"); $("span").text( n.length ); setTimeout(showIt, 100); }//显示队列的长度 $('#foo').slideUp().fadeIn();//当这条语句执行时,元素会立即开始其滑动动画,但是淡入过渡被置于 fx 队列,只有当滑动过渡完成后才会被调用
この機能は、
コールバック関数を提供するアニメーション メソッドに似ています。ただし、アニメーションの実行時にコールバック関数を設定する必要はありません:
$('#foo').slideUp(); $('#foo').queue(function() { alert('Animation complete.'); $(this).dequeue(); });
は次と同等です: $('#foo').slideUp(function() {
alert('Animation complete.');
});
5. .removeData()
メソッドは、data()メソッドを通じて以前に設定されたデータを削除します
$(selector).removeData(name)//如果没有规定名称,该方法将从被选元素中删除所有已存储的数据 $("#btn2").click(function(){ $("div").removeData("greeting"); alert("Greeting is: " + $("div").data("greeting")); });//从元素中删除之前添加的数据
以上がjqueryにおける数種類のデータの使用例まとめの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









DDREASE は、ハード ドライブ、SSD、RAM ディスク、CD、DVD、USB ストレージ デバイスなどのファイル デバイスまたはブロック デバイスからデータを回復するためのツールです。あるブロック デバイスから別のブロック デバイスにデータをコピーし、破損したデータ ブロックを残して正常なデータ ブロックのみを移動します。 ddreasue は、回復操作中に干渉を必要としないため、完全に自動化された強力な回復ツールです。さらに、ddasue マップ ファイルのおかげでいつでも停止および再開できます。 DDREASE のその他の主要な機能は次のとおりです。 リカバリされたデータは上書きされませんが、反復リカバリの場合にギャップが埋められます。ただし、ツールに明示的に指示されている場合は切り詰めることができます。複数のファイルまたはブロックから単一のファイルにデータを復元します

0.この記事は何をするのですか?私たちは、多用途かつ高速な最先端の生成単眼深度推定モデルである DepthFM を提案します。従来の深度推定タスクに加えて、DepthFM は深度修復などの下流タスクでも最先端の機能を実証します。 DepthFM は効率的で、いくつかの推論ステップ内で深度マップを合成できます。この作品について一緒に読みましょう〜 1. 論文情報タイトル: DepthFM: FastMonocularDepthEstimationwithFlowMatching 著者: MingGui、JohannesS.Fischer、UlrichPrestel、PingchuanMa、Dmytr

Google が推進する JAX のパフォーマンスは、最近のベンチマーク テストで Pytorch や TensorFlow のパフォーマンスを上回り、7 つの指標で 1 位にランクされました。また、テストは最高の JAX パフォーマンスを備えた TPU では行われませんでした。ただし、開発者の間では、依然として Tensorflow よりも Pytorch の方が人気があります。しかし、将来的には、おそらくより大規模なモデルが JAX プラットフォームに基づいてトレーニングされ、実行されるようになるでしょう。モデル 最近、Keras チームは、ネイティブ PyTorch 実装を使用して 3 つのバックエンド (TensorFlow、JAX、PyTorch) をベンチマークし、TensorFlow を使用して Keras2 をベンチマークしました。まず、主流のセットを選択します

iPhone のモバイル データ接続に遅延や遅い問題が発生していませんか?通常、携帯電話の携帯インターネットの強度は、地域、携帯ネットワークの種類、ローミングの種類などのいくつかの要因によって異なります。より高速で信頼性の高いセルラー インターネット接続を実現するためにできることがいくつかあります。解決策 1 – iPhone を強制的に再起動する 場合によっては、デバイスを強制的に再起動すると、携帯電話接続を含む多くの機能がリセットされるだけです。ステップ 1 – 音量を上げるキーを 1 回押して放します。次に、音量小キーを押して、もう一度放します。ステップ 2 – プロセスの次の部分は、右側のボタンを押し続けることです。 iPhone の再起動が完了するまで待ちます。セルラーデータを有効にし、ネットワーク速度を確認します。もう一度確認してください 修正 2 – データ モードを変更する 5G はより優れたネットワーク速度を提供しますが、信号が弱い場合はより適切に機能します

世界は狂ったように大きなモデルを構築していますが、インターネット上のデータだけではまったく不十分です。このトレーニング モデルは「ハンガー ゲーム」のようであり、世界中の AI 研究者は、データを貪欲に食べる人たちにどのように餌を与えるかを心配しています。この問題は、マルチモーダル タスクで特に顕著です。何もできなかった当時、中国人民大学学部のスタートアップチームは、独自の新しいモデルを使用して、中国で初めて「モデル生成データフィード自体」を実現しました。さらに、これは理解側と生成側の 2 つの側面からのアプローチであり、両方の側で高品質のマルチモーダルな新しいデータを生成し、モデル自体にデータのフィードバックを提供できます。モデルとは何ですか? Awaker 1.0 は、中関村フォーラムに登場したばかりの大型マルチモーダル モデルです。チームは誰ですか?ソフォンエンジン。人民大学ヒルハウス人工知能大学院の博士課程学生、ガオ・イージャオ氏によって設立されました。

今週、OpenAI、Microsoft、Bezos、Nvidiaが投資するロボット企業FigureAIは、7億ドル近くの資金調達を受け、来年中に自立歩行できる人型ロボットを開発する計画であると発表した。そしてテスラのオプティマスプライムには繰り返し良い知らせが届いている。今年が人型ロボットが爆発的に普及する年になることを疑う人はいないだろう。カナダに拠点を置くロボット企業 SanctuaryAI は、最近新しい人型ロボット Phoenix をリリースしました。当局者らは、多くのタスクを人間と同じ速度で自律的に完了できると主張している。人間のスピードでタスクを自律的に完了できる世界初のロボットである Pheonix は、各オブジェクトを優しくつかみ、動かし、左右にエレガントに配置することができます。自律的に物体を識別できる

最近、軍事界は、米軍戦闘機が AI を使用して完全自動空戦を完了できるようになったというニュースに圧倒されました。そう、つい最近、米軍のAI戦闘機が初めて公開され、その謎が明らかになりました。この戦闘機の正式名称は可変安定性飛行シミュレーター試験機(VISTA)で、アメリカ空軍長官が自ら飛行させ、一対一の空戦をシミュレートした。 5 月 2 日、フランク ケンダル米国空軍長官は X-62AVISTA でエドワーズ空軍基地を離陸しました。1 時間の飛行中、すべての飛行動作が AI によって自律的に完了されたことに注目してください。ケンダル氏は「過去数十年にわたり、私たちは自律型空対空戦闘の無限の可能性について考えてきたが、それは常に手の届かないものだと思われてきた」と語った。しかし今では、

テスラのロボット「オプティマス」の最新映像が公開され、すでに工場内で稼働可能となっている。通常の速度では、バッテリー(テスラの4680バッテリー)を次のように分類します:公式は、20倍の速度でどのように見えるかも公開しました - 小さな「ワークステーション」上で、ピッキング、ピッキング、ピッキング:今回は、それがリリースされたハイライトの1つビデオの内容は、オプティマスが工場内でこの作業を完全に自律的に行い、プロセス全体を通じて人間の介入なしに完了するというものです。そして、オプティマスの観点から見ると、自動エラー修正に重点を置いて、曲がったバッテリーを拾い上げたり配置したりすることもできます。オプティマスのハンドについては、NVIDIA の科学者ジム ファン氏が高く評価しました。オプティマスのハンドは、世界の 5 本指ロボットの 1 つです。最も器用。その手は触覚だけではありません
