ホームページ データベース mysql チュートリアル pt-query-digest(percona ツールキット)小解

pt-query-digest(percona ツールキット)小解

Jun 23, 2017 am 11:05 AM

pt-query-digest は、ログ、processlist、および tcpdump を通じて MySQL クエリ関連の情報を分析できます。基本的な構文は次のとおりです。
pt-query-digest [OPTIONS] [FILES] [DSN]
ログイン後にコピー

pt-query-digest は、MySQL クエリを分析するためのシンプルなツールです。これほど使いやすいツールは他にありません。 MySQL のスロー ログ、一般的なログ、バイナリ ログ クエリを分析できます。 (バイナリ ログは、まず mysqlbinlog ツールを使用してテキストに変換する必要があります)。また、tcpdump からの SHOW PROCESSLIST および MySQL プロトコル データでも機能します。デフォルトでは、ツールはどのクエリが最も遅いかを報告するため、最適化することが最も重要です。 --group-by、--filter、--embedded-attributes などのパラメータを使用すると、さらにカスタマイズされたレポートを作成できます。
pt-query-digest には主に以下の機能があります:
(1) throw.log を使用して統計情報を生成:
pt-query-digest slow.log
ログイン後にコピー

(2) processlist から分析してレポートを生成:
pt-query-digest --processlist h=host1
ログイン後にコピー

(3) tcppdump パケット キャプチャを通じて遅いクエリを分析する:
tcpdump -s 65535 -x -nn -q -tttt -i any -c 1000 port 3306 > mysql.tcp.txt
pt-query-digest --type tcpdump mysql.tcp.txt
ログイン後にコピー

(4) 別のホストへの遅いログ クエリを分析する:
pt-query-digest --review h=host2 --no-report slow.log
ログイン後にコピー

見てみましょう主なパラメータ:
--type のデフォルトはslowlogで、パラメータ値はbinlog、genlog、slowlog、tcpdump、rawlogなどに設定できます。
--processlist processlist を通じて MySQL の完全なログ クエリを分析します
--create-review-table --review パラメーターを使用して分析結果をテーブルに出力する場合、テーブルが存在しない場合は自動的に作成されます。
--create-history-table --history パラメータを使用して分析結果をテーブルに出力する場合、テーブルが存在しない場合は自動的に作成されます。
--filter は、指定された文字列に従って入力遅いクエリを照合およびフィルターし、それを分析します
--limit 出力結果のパーセンテージまたは数を制限します。デフォルト値は 20 で、最も遅い 20 個のステートメントが出力されることを意味します。 . 合計応答時間に応じて 50% が大きいものから小さいものに分類され、合計が 50% に達すると出力が遮断されます。
--ホスト MySQL サーバーのアドレス
--user mysql ユーザー名
--password mysql ユーザーのパスワード
--history 分析結果をテーブルに保存します。次回は --history を使用します。同じステートメントが存在し、クエリの時間間隔が履歴テーブルの時間間隔と異なる場合、同じ CHECKSUM をクエリすることで、特定の種類のクエリの履歴変更を比較できます。
--review 分析結果をテーブルに保存します。この分析は 1 つのクエリ条件をパラメータ化するだけであり、比較的単純です。次回 --review を使用した場合、同じステートメント分析が存在する場合、データテーブルには記録されません。
-- 出力分析結果の出力タイプ。値はレポート (標準分析レポート)、slowlog (Mysql スロー ログ)、json、json-anon にすることができます。通常は読みやすいようにレポートを使用します。
--since は、分析が開始されてからの時刻です。値は、「yyyy-mm-dd [hh:mm:ss]」の形式で指定された時点にすることもできます。単純な時間値: s (秒)、h (時間)、m (分)、d (日)。12h などは、統計が 12 時間前に開始されたことを意味します。
-- 期限まで、 -- と組み合わせると、一定期間内に遅いクエリを分析できます。
デフォルトの出力レポートに関連する情報を見てみましょう:
(1) データ統計情報
# 2291.9s user time, 6.4s system time, 41.68M rss, 193.36M vsz
# Current date: Mon Jun 19 11:19:51 2017# Hostname: mxqmongodb2
# Files: /home/mysql/db3306/log/slowlog_343306.log
# Overall: 6.72M total, 140 unique, 16.12 QPS, 0.69x concurrency _________
# Time range: 2017-06-13T14:34:41 to 2017-06-18T10:22:04# Attribute total min max avg 95% stddev median
# ============ ======= ======= ======= ======= ======= ======= =======# Exec time 287519s 1us 20s 43ms 148ms 339ms 214us
# Lock time 151259s 0 20s 23ms 144us 319ms 47us
# Rows sent 5.40M 0 1000 0.84 0.99 6.58 0.99# Rows examine 388.33M 0 3.72k 60.59 5.75 388.16 0.99# Query size 692.26M 6 799 108.02 202.40 69.96 80.10
ログイン後にコピー

上記には、ホスト名ホスト名、全体合計クエリ、一意の個別クエリ、分析に関する情報が含まれます。 time period 期間の範囲、属性部分は 3 番目の部分と同じです。最適な分析のために配置します
(2) 遅いクエリ SQL 統計結果とオーバーヘッド統計
# Profile
# Rank Query ID Response time Calls R/Call V/M Item
# ==== ================== ================= ======= ====== ===== =========# 1 0x255C57D761A899A9 146053.6926 50.8% 75972 1.9225 2.93 UPDATE warehouse
# 2 0x813031B8BBC3B329 94038.9621 32.7% 242741 0.3874 0.23 COMMIT
# 3 0xA0352AA54FDD5DF2 10125.5055 3.5% 75892 0.1334 0.43 UPDATE order_line
# 4 0xE5E8C12332AD11C5 5660.5113 2.0% 75977 0.0745 0.83 SELECT district
# 5 0xBD195A4F9D50914F 3634.6219 1.3% 757760 0.0048 1.01 SELECT stock
# 6 0xF078A9E73D7A8520 3431.3527 1.2% 75874 0.0452 0.81 UPDATE district
# 7 0x9577D48F480A1260 2307.4342 0.8% 50255 0.0459 1.25 SELECT customer
# 8 0xFFDA79BA14F0A223 2158.4731 0.8% 75977 0.0284 0.54 SELECT customer warehouse
# 9 0x5E61FF668A8E8456 1838.4440 0.6% 1507614 0.0012 0.74 SELECT stock
# 10 0x10BEBFE721A275F6 1671.8274 0.6% 757751 0.0022 0.52 INSERT order_line
# 11 0x8B2716B5B486F6AA 1658.5984 0.6% 75871 0.0219 0.75 INSERT history
# 12 0xBF40A4C7016F2BAE 1504.7939 0.5% 758569 0.0020 0.77 SELECT item
# 13 0x37AEB73B59EFC119 1470.5951 0.5% 2838 0.5182 0.27 INSERT SELECT tpcc._stock_new tpcc.stock
# 15 0x26C4F579BF19956D 1030.4416 0.4% 1982 0.5199 0.28 INSERT SELECT tpcc.__stock_new tpcc.stock
# 22 0xD80B7970DBF2419C 493.0831 0.2% 947 0.5207 0.28 INSERT SELECT tpcc.__stock_new tpcc.stock
# 23 0xDE7EA4E363CAD006 488.2134 0.2% 943 0.5177 0.25 INSERT SELECT tpcc.__stock_new tpcc.stock
# 25 0x985B012461683472 470.6418 0.2% 907 0.5189 0.25 INSERT SELECT tpcc.__stock_new tpcc.stock
# MISC 0xMISC 9482.0467 3.3% 2182254 0.0043 0.0 <123 ITEMS>
ログイン後にコピー

情報には、Response: total が含まれます応答時間、時間 : この分析におけるこのクエリの合計時間の割合。呼び出し数: 実行数、つまり、この分析におけるこのタイプのクエリ ステートメントの合計数。 R/Call: 実行ごとの平均応答時間。項目: SQL 操作テーブル。
(3) 3 番目の部分、各 SQL の詳細情報
# Query 1: 1.14 QPS, 2.19x concurrency, ID 0x255C57D761A899A9 at byte 1782619576# This item is included in the report because it matches --limit.
# Scores: V/M = 2.93# Time range: 2017-06-13T14:34:42 to 2017-06-14T09:05:56# Attribute pct total min max avg 95% stddev median
# ============ === ======= ======= ======= ======= ======= ======= =======# Count 1 75972# Exec time 50 146054s 160us 20s 2s 7s 2s 1s
# Lock time 94 142872s 39us 20s 2s 7s 2s 992ms
# Rows sent 0 0 0 0 0 0 0 0# Rows examine 0 74.19k 1 1 1 1 0 1# Query size 0 4.05M 53 57 55.88 56.92 0.82 54.21# String:
# Hosts 127.0.0.1# Users root
# Query_time distribution
# 1us
# 10us
# 100us ######################
# 1ms ##
# 10ms ###
# 100ms ##################################
# 1s ################################################################
# 10s+ ##
# Tables
# SHOW TABLE STATUS LIKE 'warehouse'\G
# SHOW CREATE TABLE `warehouse`\G
UPDATE warehouse SET w_ytd = w_ytd + 3651 WHERE w_id = 4\G
# Converted for EXPLAIN
# EXPLAIN /*!50100 PARTITIONS*/select w_ytd = w_ytd + 3651 from warehouse where w_id = 4\G
ログイン後にコピー

クエリ 1 は、コストの点で 1 位にランクされたクエリです。最初の行はテーブルの列ヘッダーです。パーセントは分析実行全体の合計のパーセンテージであり、合計は指定されたメトリックの実際の値です。たとえば、このケースでは、クエリが 75972 回実行されたことがわかります。これは、ファイル内の合計クエリの 50% です。 min、max、avg 列は一目瞭然です。 95 パーセンタイル列には 95 パーセンタイルが表示され、値の 95% がその値以下になります。標準偏差は、値がどの程度密接にグループ化されているかを示します。標準偏差と中央値は、最大値と最小値を無視して、95 パーセンタイルから計算されます。
通常の使用法を見てみましょう:
1: 遅いログを分析します
デフォルトのレポート
[root@mxqmongodb2 bin]# ./pt-query-digest /home/mysql/db3306/log/slowlog_343306.log >/home/sa/slowlog_343306.log
ログイン後にコピー

時間ごとにセグメント化されており、通常は 1 日の遅いログを分析します:
[root@mxqmongodb2 bin]# ./pt-query-digest --since=24h /home/mysql/db3306/log/slowlog_343306.log >/home/sa/slowlog_343306_24.log
ログイン後にコピー

而且我们可以设置过滤条天通过--filter参数,更好生成我们想要的报表。
例如只查询select:--filter '$event->{arg} =~ m/^select/i',只查询某个用户:--filter '($event->{user} || "") =~ m/^dba/i' ,全表扫描等:--filter '(($event->{Full_scan} || "") eq "yes") ||(($event->{Full_join} || "") eq "yes")' 
2:保存分析结果到表文件:
[root@mxqmongodb2 bin]# ./pt-query-digest --user=root --password=123456 --port=3306 --review h=172.16.16.35,D=test,t=query_report /home/mysql/db3306/log/slowlog_343306.log
ログイン後にコピー

 

看一下结果样式
mysql> select * from query_report limit 1\G*************************** 1. row ***************************checksum: 1206612749604517366fingerprint: insert into order_line (ol_o_id, ol_d_id, ol_w_id, ol_number, ol_i_id, ol_supply_w_id, ol_quantity, ol_amount, ol_dist_info) values(?+)
sample: INSERT INTO order_line (ol_o_id, ol_d_id, ol_w_id, ol_number, ol_i_id, ol_supply_w_id, ol_quantity, ol_amount, ol_dist_info) VALUES (3730, 6, 10, 1, 6657, 10, 8, 62.41910171508789, 'N3F5fAhga7U51tlXr8AEgZdi')
first_seen: 2017-06-13 14:34:42last_seen: 2017-06-14 09:05:54reviewed_by: NULL
reviewed_on: NULL
comments: NULL1 row in set (0.00 sec)
ログイン後にコピー

 

3:分析binlog(要先使用mysqlbinlog将binlog转换)
[root@mxqmongodb2 log]# mysqlbinlog mysql-bin.000012 >/home/sa/mysql-bin_000012.log
[root@mxqmongodb2 bin]# ./pt-query-digest --type=binlog /home/sa/mysql-bin_000012.log >/home/sa/mysql-bin_000012_report.log
ログイン後にコピー

 

这个测试的时候还是有点小迷茫的,因为打印的结果并不是我要的,难道是因为我的binlog格式是ROW?保留下来,后面在测试。
4:分析general log
加上--type=genlog 即可,没有验证。。。。。。
5:tcpdump抓包分析
我们先要开启压力测试:
[root@mxqmongodb2 tpcc-mysql]# ./tpcc_start -h127.0.0.1 -P3306 -d tpcc -u root -p123456 -w 10 -c 10 -r 10 -l 3000
ログイン後にコピー

 

连续测试三十分钟,提供我们的抓取数据:
[root@mxqmongodb2 log]# tcpdump -s 65535 -x -nn -q -tttt -i any -c 10000 port 3306 >/home/sa/mysql.tcp.txt
[root@mxqmongodb2 bin]# ./pt-query-digest --type=tcpdump /home/sa/mysql.tcp.txt >/home/sa/mysql.tcp_repot.txt
ログイン後にコピー

 

看一下效果:
[root@mxqmongodb2 sa]# cat mysql.tcp_repot.txt
 
# 4.2s user time, 50ms system time, 27.65M rss, 179.15M vsz
# Current date: Tue Jun 20 17:08:40 2017# Hostname: mxqmongodb2
# Files: /home/sa/mysql.tcp.txt
# Overall: 155 total, 3 unique, 9.76 QPS, 4.52x concurrency ______________
# Time range: 2017-06-20 17:06:19.850032 to 17:06:35.731291# Attribute total min max avg 95% stddev median
# ============ ======= ======= ======= ======= ======= ======= =======# Exec time 72s 63us 2s 463ms 1s 352ms 393ms
# Rows affecte 25 0 15 0.16 0.99 1.18 0# Query size 956 6 30 6.17 5.75 1.85 5.75# Warning coun 1 0 1 0.01 0 0.08 0
 # Profile
# Rank Query ID Response time Calls R/Call V/M Item
# ==== ================== ============= ===== ====== ===== =========# 1 0x813031B8BBC3B329 69.9077 97.4% 153 0.4569 0.25 COMMIT
# MISC 0xMISC 1.8904 2.6% 2 0.9452 0.0 <2 ITEMS>
 # Query 1: 9.63 QPS, 4.40x concurrency, ID 0x813031B8BBC3B329 at byte 10100332# This item is included in the report because it matches --limit.
# Scores: V/M = 0.25# Time range: 2017-06-20 17:06:19.850032 to 17:06:35.731291# Attribute pct total min max avg 95% stddev median
# ============ === ======= ======= ======= ======= ======= ======= =======# Count 98 153# Exec time 97 70s 63us 2s 457ms 1s 336ms 393ms
# Rows affecte 100 25 0 15 0.16 0.99 1.19 0# Query size 96 918 6 6 6 6 0 6# Warning coun 100 1 0 1 0.01 0 0.08 0# String:
# Hosts 127.0.0.1# Query_time distribution
# 1us
# 10us #
# 100us ####
# 1ms #
# 10ms #
# 100ms ################################################################
# 1s ##########
# 10s+commit\G
ログイン後にコピー

 

以上がpt-query-digest(percona ツールキット)小解の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Alter Tableステートメントを使用してMySQLのテーブルをどのように変更しますか? Alter Tableステートメントを使用してMySQLのテーブルをどのように変更しますか? Mar 19, 2025 pm 03:51 PM

この記事では、MySQLのAlter Tableステートメントを使用して、列の追加/ドロップ、テーブル/列の名前の変更、列データ型の変更など、テーブルを変更することについて説明します。

MySQL接続用のSSL/TLS暗号化を構成するにはどうすればよいですか? MySQL接続用のSSL/TLS暗号化を構成するにはどうすればよいですか? Mar 18, 2025 pm 12:01 PM

記事では、証明書の生成と検証を含むMySQL用のSSL/TLS暗号化の構成について説明します。主な問題は、セルフ署名証明書のセキュリティへの影響を使用することです。[文字カウント:159]

人気のあるMySQL GUIツール(MySQL Workbench、PhpMyAdminなど)は何ですか? 人気のあるMySQL GUIツール(MySQL Workbench、PhpMyAdminなど)は何ですか? Mar 21, 2025 pm 06:28 PM

記事では、MySQLワークベンチやPHPMyAdminなどの人気のあるMySQL GUIツールについて説明し、初心者と上級ユーザーの機能と適合性を比較します。[159文字]

MySQLの大きなデータセットをどのように処理しますか? MySQLの大きなデータセットをどのように処理しますか? Mar 21, 2025 pm 12:15 PM

記事では、MySQLで大規模なデータセットを処理するための戦略について説明します。これには、パーティション化、シャード、インデックス作成、クエリ最適化などがあります。

INNODBフルテキスト検索機能を説明します。 INNODBフルテキスト検索機能を説明します。 Apr 02, 2025 pm 06:09 PM

INNODBのフルテキスト検索機能は非常に強力であり、データベースクエリの効率と大量のテキストデータを処理する能力を大幅に改善できます。 1)INNODBは、倒立インデックスを介してフルテキスト検索を実装し、基本的および高度な検索クエリをサポートします。 2)一致を使用してキーワードを使用して、ブールモードとフレーズ検索を検索、サポートします。 3)最適化方法には、単語セグメンテーションテクノロジーの使用、インデックスの定期的な再構築、およびパフォーマンスと精度を改善するためのキャッシュサイズの調整が含まれます。

ドロップテーブルステートメントを使用してMySQLにテーブルをドロップするにはどうすればよいですか? ドロップテーブルステートメントを使用してMySQLにテーブルをドロップするにはどうすればよいですか? Mar 19, 2025 pm 03:52 PM

この記事では、ドロップテーブルステートメントを使用してMySQLのドロップテーブルについて説明し、予防策とリスクを強調しています。これは、バックアップなしでアクションが不可逆的であることを強調し、回復方法と潜在的な生産環境の危険を詳述しています。

外国の鍵を使用して関係をどのように表現しますか? 外国の鍵を使用して関係をどのように表現しますか? Mar 19, 2025 pm 03:48 PM

記事では、外部キーを使用してデータベース内の関係を表すことで、ベストプラクティス、データの完全性、および避けるべき一般的な落とし穴に焦点を当てています。

JSON列にインデックスを作成するにはどうすればよいですか? JSON列にインデックスを作成するにはどうすればよいですか? Mar 21, 2025 pm 12:13 PM

この記事では、クエリパフォーマンスを強化するために、PostgreSQL、MySQL、MongoDBなどのさまざまなデータベースでJSON列にインデックスの作成について説明します。特定のJSONパスのインデックス作成の構文と利点を説明し、サポートされているデータベースシステムをリストします。

See all articles