特に明記されていない限り、以下は Python3 に基づいています
要約
この記事では、Python
で継承関係を渡す方法について説明します> super()
は「親クラス」メソッドを呼び出し、super(Type, CurrentClass)
は CurrentClass
の MRO
を返します。 Type の次のクラスのプロキシと、正しく初期化されるように Python
クラスを設計する方法。 Python
继承关系中如何通过super()
调用“父类”方法,super(Type, CurrentClass)
返回CurrentClass
的MRO
中Type
的下一个类的代理;以及如何设计Python
类以便正确初始化。
在继承中,调用父类方法是很有必要的。调用父类方法的场景有很多:
比如必须调用父类的构造方法__init__
才能正确初始化父类实例属性,使得子类实例对象能够继承到父类实例对象的实例属性;
再如需要重写父类方法时,有时候没有必要完全摒弃父类实现,只是在父类实现前后加一些实现,最终还是要调用父类方法
单继承是最简单的继承关系,多继承过于复杂,而且使用起来容易出错。因此一些高级语言完全摒弃了多继承,只支持单继承;一些高级语言虽然支持多继承,但也不推荐使用多继承。Python
也是一样,在不能完全掌握多继承时,最好不好使用,单继承能满足绝大部分的需求。
绑定方法与非绑定方法的区别与联系参见:Python基础-类
如有以下继承关系两个类:
class D(object):def test(self):print('test in D')class C(D):def test(self):print('test in C') D.test(self)
现在要求在子类C
的test
函数中调用父类D
的test
实现。我们能想到最直接的方法恐怕是直接引用类对象D
的函数成员test
了:
class D(object):def test(self):print('test in D')class C(D):def test(self):print('test in C')
尝试测试一下:
c = C() c.test()
output:
test in C test in D
看来非绑定的方式确实满足了当前调用父类方法的需求。
参考Python tutorial关于super的描述: super([type[, object-or-type]])
Return a proxy object that delegates method calls to a parent or sibling class of type. This is useful for accessing inherited methods that have been overridden in a class. The search order is same as that used by getattr() except that the type itself is skipped.
super
函数返回委托类type
的父类或者兄弟类方法调用的代理对象。super
用来调用已经在子类中重写了的父类方法。方法的搜索顺序与getattr()
函数相同,只是参数类type
本身被忽略。
使用绑定方式调用父类方法,自然不能显式传入参数当前对象(self
)。现在super
函数能够范围对父类的代理,因为在单继承中子类有且仅有一个父类,所以父类是明确的,我们完全清楚调用的父类方法是哪个:
class D(object):def test(self):print('test in D')class C(D):def test(self):print('test in C')super().test() # super(C, self).test()的省略形式
事实上,super
函数返回的代理对象是一个bultin class super
,正如它的名字所指,类super
代理了子类的父类。在单继承关系中,super
代理的类很容易找到吗,就是子类的唯一父类;但是在多继承关系中,super
除了能代理子类的父类外,还有可能代理子类的兄弟类。
在多继承关系中,继承关系可能会相当复杂。
class D(object): def test(self):print('test in D')class C(D): def test(self):print('test in C')class B(D): def test(self):print('test in B')class A(B, C):pass
类A
继承层次结构如下:
object | D / \ B C \ / A
类A
的继承关系中存在菱形结构,即可以通过多条路径从类A
到达某个父类,这里是D
。
如果现在要求在类A
中调用“父类”的test
方法,需要一种对test
方法的搜索解析顺序,来决定到底是调用B,C或D
的test
方法。
上面提出的对test
的方法的搜索顺序,就是方法解析顺序了。
深度优先Python
旧式类中,方法解析顺序是深度优先,多个父类从左到右。
广度优先Python
新式类中,方法解析顺序是广度优先,多个父类从左到右。
所以上面的解析顺序是:A -> B -> C -> D -> object
。
Python
中,类的__mro__
属性展示了方法搜索顺序,可以调用mro()
方法或者直接引用__mro__
__init__
を正しく初期化するには、親クラスのコンストラクター メソッド __init__
を呼び出す必要があります。親クラスのインスタンス属性。サブクラスのインスタンス オブジェクトが親クラスのインスタンス オブジェクトのインスタンス属性を継承できるようにします。 🎜Python
についても同様です。多重継承を完全にマスターできない場合は、ほとんどのニーズを満たすことができる単一継承を使用しないことをお勧めします。 🎜print(A.mro())print(A.__mro__)
test
関数で、親クラス D
の test
実装を呼び出す必要があります。 >Cコード>。私たちが考える最も直接的な方法は、おそらくクラス オブジェクト D
の関数メンバー test
を直接参照することです: 🎜🎜[<class '__main__.A'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.D'>, <class 'object'>] (<class '__main__.A'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.D'>, <class 'object'>)
a = A() a.test() # output: test in B
class D(object): def test(self):print('test in D')class C(D): def test(self):print('test in C')class B(D): def test(self):print('test in B')
super([type[, object-or-type]])
🎜🎜🎜 プロキシ オブジェクトを返しますこれは、型の親クラスまたは兄弟クラスにメソッド呼び出しを委任します。これは、クラス内でオーバーライドされた継承メソッドにアクセスする場合に便利です。ただし、型自体がスキップされる点を除き、検索順序は getattr() で使用されるものと同じです。 🎜🎜 super
関数は、デリゲート クラス type
の親クラスまたは兄弟クラスのメソッドによって呼び出されるプロキシ オブジェクトを返します。 super
は、サブクラスでオーバーライドされた親クラスのメソッドを呼び出すために使用されます。メソッドの検索順序は、パラメータ クラス type
自体が無視される点を除いて、getattr()
関数の場合と同じです。 🎜self
) を明示的に渡すことはできません。 super
関数は、親クラスのプロキシをスコープできるようになりました。単一継承では、サブクラスには親クラスが 1 つしかないため、親クラスが明確になり、どの親クラス メソッドが存在するのかが完全にわかります。 :🎜🎜object | D / \ C B
super
関数によって返されるプロキシ オブジェクトは、その名前が示すように bultin class super
です。 、クラス < code>super はサブクラスの親クラスを表します。単一継承関係では、super
が表すクラスを見つけるのは簡単ですか? それはサブクラスの唯一の親クラスですが、多重継承関係では、super
は見つけることができます。サブクラスのプロキシだけでなく、親クラスに加えて、サブクラスの兄弟クラスもプロキシすることができます。 🎜class D(object): def test(self):print('test in D')class C(D): def test(self):print('test in C')super().test()class B(D): def test(self):print('test in B')super().test()class A(B, C):passb = B() b.test()print('==========') a = A() a.test()
A
の継承階層は次のとおりです: 🎜test in B test in D==========test in B test in C test in D
A
の継承関係にはダイヤモンド構造があります。クラス A
からの複数のパスが特定の親クラス (この場合は D
) に到達します。 🎜🎜クラス A
の "🎜親クラス🎜" の test
メソッドを呼び出す必要がある場合、< code>test< /code> メソッドの検索と解析の順序は、B、C、または D
の test
メソッドを呼び出すかどうかを決定するために使用されます。 🎜test
のメソッドの検索順序がメソッド解決順序です。 🎜🎜🎜深さ優先🎜🎜Python
古いスタイルのクラスでは、メソッドの解析順序は深さ優先で、複数の親クラスは左から右になります。 🎜🎜幅優先🎜🎜 Python
の新しいスタイルのクラスでは、メソッド解決の順序は幅優先で、複数の親クラスは左から右になります。 🎜🎜上記の解析順序は、A -> B -> C -> D ->
です。 🎜🎜 Python
では、クラスの __mro__
属性は、mro()
メソッドを呼び出すか、< を直接参照できます。 code>__mro__< /code>検索順を取得: 🎜🎜def super(cls, inst): mro = inst.__class__.mro() # Always the most derived classreturn mro[mro.index(cls) + 1]
output:
[<class '__main__.A'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.D'>, <class 'object'>] (<class '__main__.A'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.D'>, <class 'object'>)
所以
a = A() a.test() # output: test in B
变化的MRO
即使是同一个类,在不同的MRO中位置的前后关系都是不同的。如以下类:
class D(object): def test(self):print('test in D')class C(D): def test(self):print('test in C')class B(D): def test(self):print('test in B')
类B
的继承层次结构为:
object | D / \ C B
类B
的MRO:B -> D -> object
对比类A
的MRO:A -> B -> C -> D -> object
同样的类B
,在两个不同的MRO中位置关系也是不同的。可以说,在已有的继承关系中加入新的子类,会在MRO中引入新的类,并且改变解析顺序。
那么可以想象,同样在类B
的test中通过super
调用父类方法,在不同的MRO中实际调用的方法是不同的。
如下:
class D(object): def test(self):print('test in D')class C(D): def test(self):print('test in C')super().test()class B(D): def test(self):print('test in B')super().test()class A(B, C):passb = B() b.test()print('==========') a = A() a.test()
output:
test in B test in D==========test in B test in C test in D
因为在原有的类关系中加入B
和C
的子类A
,使得在B
的test
方法中调用super
的test
方法发生了改变,原来调用的是其父类D
的test
方法,现在调用的是其兄弟类C
的test
方法。
从这里可以看出super
不总是代理子类的父类,还有可能代理其兄弟类。
因此在设计多继承关系的类体系时,要特别注意这一点。
方法super([type[, object-or-type]])
,返回的是对type
的父类或兄弟类的代理。
如果第二个参数省略,返回的super
对象是未绑定到确定的MRO
上的:
如果第二个参数是对象,那么isinstance(obj, type)
必须为True
;
如果第二个参数是类型,那么issubclass(type2, type)
必须为True
,即第二个参数类型是第一个参数类型的子类。
在super
函数的第二个参数存在时,其实现大概如以下:
def super(cls, inst): mro = inst.__class__.mro() # Always the most derived classreturn mro[mro.index(cls) + 1]
很明显,super
返回在第二个参数对应类的MRO
列表中,第一个参数type
的下一个类的代理。因此,要求第一个参数type
存在于第二个参数类的MRO
是必要的,只有第一个参数类是第二个参数所对应类的父类,才能保证。
super()
super
函数是要求有参数的,不存在无参的super
函数。在类定义中以super()
方式调用,是一种省略写法,由解释器填充必要参数。填充的第一个参数是当前类,第二个参数是self
:
super() => super(current_class, self)
所以,super()
这种写法注定只能在类定义中使用。
现在再来看上面的继承关系:
class D(object):def test(self):print('test in D')class C(D):def test(self):print('test in C')# super().test() # 与下面的写法等价super(C, self).test() # 返回self对应类的MRO中,类C的下一个类的代理class B(D):def test(self):print('test in B')# super().test() # 与下面的写法等价super(B, self).test() # 返回self对应类的MRO中,类B的下一个类的代理class A(B, C):pass
因此:
b = B() b.test() # 基于类B的MRO(B->D->object),类B中的super()代理Dprint('==========') a = A() a.test() # 基于类A的MRO(A->B->C->D->object),类B中的super()代理C
以上就是在继承关系中引入新类,改变方法解析顺序的实例。
super([type[, object-or-type]])
的第二个参数,对象和类还有一点区别:使用对象返回的是代理使用绑定方法,使用类返回的代理使用非绑定方法。
如:
b = B()super(B, b).test()super(B, B).test(b)
这两种方式得到的结果是相同的,区别在于非绑定调用与绑定调用。
普通的函数或者方法调用中,调用者肯定事先知道被调用者所需的参数,然后可以轻松的组织参数调用。但是在多继承关系中,情况有些尴尬,使用super
代理调用方法,编写类的作者并不知道最终会调用哪个类的方法,这个类都可能尚未存在。
如现在一作者编写了以下类:
class D(object):def test(self):print('test in D') class B(D):def test(self):print('test in B')super().test()
在定义类D
时,作者完全不可能知道test
方法中的super().test()
最终会调用到哪个类。
因为如果后来有人在这个类体系的基础上,引入了如下类:
class C(D):def test(self):print('test in C')super().test() class A(B, C):passa = A() a.test()
此时会发现类B
的test
方法中super().test()
调用了非原作者编写的类的方法。
这里test
方法的参数都是确定的,但是在实际生产中,可能各个类的test
方法都是不同的,如果新引入的类C
需要不同的参数:
class C(D):def test(self, param_c):print('test in C, param is', param_c)super().test() class A(B, C):passa = A() a.test()
类B
的调用方式调用类C
的test
方法肯定会失败,因为没有提供任何参数。类C
的作者是不可能去修改类B
的实现。那么,如何适应这种参数变换的需求,是在设计Python
类中需要考虑的问题。
事实上,这种参数的变换在构造方法上能体现得淋漓尽致,如果子类没有正确初始化父类,那么子类甚至不能从父类继承到需要的实例属性。
所以,Python
的类必须设计友好,才能拓展,有以下三条指导原则:
通过super()
调用的方法必须存在;
调用者和被调用者参数必须匹配;
所有对父类方法的调用都必须使用super()
super()
代理的类是不可预测的,需要匹配调用者和可能未知的调用者的参数。
固定参数
一种方法是使用位置参数固定函数签名。就像以上使用的test()
一样,其签名是固定的,只要要传递固定的参数,总是不会出错。
关键字参数
每个类的构造方法可能需要不同的参数,这时固定参数满足不了这种需求了。幸好,Python
中的关键字参数可以满足不定参数的需求。设计函数参数时,参数由关键字参数和关键字参数字典组成,在调用链中,每一个函数获取其所需的关键字参数,保留不需要的参数到**kwargs
中,传递到调用链的下一个函数,最终**kwargs
为空时,调用调用链中的最后一个函数。
示例:
class Shape(object):def __init__(self, shapename, **kwargs):self.shapename = shapenamesuper().__init__(**kwargs)class ColoredShape(Shape):def __init__(self, color, **kwargs):self.color = colorsuper().__init__(**kwargs) cs = ColoredShape(color='red', shapename='circle')
参数的剥落步骤为:
使用cs = ColoredShape(color='red', shapename='circle')
初始化ColoredShape
;
ColoredShape
的__init__
方法获取其需要的关键字参数color
,此时的kwargs
为{shapename:'circle'}
;
调用调用链中Shape
的__init__
方法,该方法获取所需关键字参数shapename
,此时kwargs
为{}
;
最后调用调用链末端objet.__init__
,此时因为kwargs
已经为空。
初始化子类传递的关键字参数尤为重要,如果少传或多传,都会导致初始化不成功。只有MRO
中每个类的方法都是用super()
来调用“父类”方法时,才能保证super()
调用链不会断掉。
上面的例子中,由于顶层父类object
总是存在__init__
方法,在任何MRO
链中也总是最后一个,因此任意的super().__init__
调用总能保证是object.__init__
结束。
但是其他自定义的方法得不到这样的保证。这时需要手动创建类似object
的顶层父类:
class Root:def draw(self):# the delegation chain stops hereassert not hasattr(super(), 'draw')class Shape(Root):def __init__(self, shapename, **kwds):self.shapename = shapenamesuper().__init__(**kwds)def draw(self):print('Drawing. Setting shape to:', self.shapename)super().draw()class ColoredShape(Shape):def __init__(self, color, **kwds):self.color = colorsuper().__init__(**kwds)def draw(self):print('Drawing. Setting color to:', self.color)super().draw() cs = ColoredShape(color='blue', shapename='square') cs.draw()
如果有新的类要加入到这个MRO
体系,新的子类也要继承Root
,这样,所有的对draw()
的调用都会经过Root
,而不会到达没有draw
方法的object
了。这种对于子类的扩展要求,应当详细注明在文档中,便于使用者阅读。这种限制与Python
所有异常都必须继承自BaseException
一样。
对于那些不友好的类:
class Moveable:def __init__(self, x, y):self.x = xself.y = ydef draw(self):print('Drawing at position:', self.x, self.y)
如果希望使用它的功能,直接将其加入到我们友好的继承体系中,会破坏原有类的友好性。
除了通过继承获得第三方功能外,还有一种称之为组合的方式,即把第三方类作为组件的方式揉入类中,使得类具有第三方的功能:
class MoveableAdapter(Root):def __init__(self, x, y, **kwds):self.movable = Moveable(x, y)super().__init__(**kwds)def draw(self):self.movable.draw()super().draw()
Moveable
被作为组件整合到适配类MoveableAdapter
中,适配类拥有了Moveable
的功能,而且是友好实现的。完全可以通过继承适配类的方式,将Moveable
的功能加入到友好的继承体系中:
class MovableColoredShape(ColoredShape, MoveableAdapter):passMovableColoredShape(color='red', shapename='triangle', x=10, y=20).draw()
Python’s super() considered super!
Python tutorial#super
以上が継承におけるMROとスーパーについて詳しく解説の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。