目次
ndarrayの作成
2次元配列
作成時に型を指定
特殊な行列を作成
特定のルールで行列を作成
基本的な演算
加算、減算、乗算関数論理演算
行列演算
よく使用されるグローバル関数
行列インデックススライストラバーサル
行列トラバーサル
行列の特別な操作
行列の形状を変更する - reshape
行列をマージしません
ホームページ バックエンド開発 Python チュートリアル NumPy の一般的なメソッドのまとめ

NumPy の一般的なメソッドのまとめ

Aug 17, 2017 am 11:26 AM
numpy よく使われる 要約する

NumPy は、Python 用のオープンソース数値計算拡張機能です。このツールを使用すると、Python 独自の入れ子になったリスト構造 (行列の表現にも使用できます) よりもはるかに効率的に大きな行列を保存および処理できます。 NumPy (Numeric Python) は、行列データ型、ベクトル処理、高度な算術ライブラリなど、多くの高度な数値プログラミング ツールを提供します。厳密な数値計算のために構築されています。これは主に多くの大手金融会社や、ローレンス リバモアなどの中核的な科学技術コンピューティング組織で使用されており、NASA は元々 C++、Fortran、または Matlab を使用して実行されていた一部のタスクを処理するためにこれを使用しています。

numpyのデータ型であるndarray型は、標準ライブラリのarray.arrayとは異なります。

ndarrayの作成

>>> import numpy as np
>>> a = np.array([2,3,4])
>>> a
array([2, 3, 4])
>>> a.dtype
dtype('int64')
>>> b = np.array([1.2, 3.5, 5.1])
>>> b.dtype
dtype('float64')
ログイン後にコピー

2次元配列

>>> b = np.array([(1.5,2,3), (4,5,6)])
>>> b
array([[ 1.5,  2. ,  3. ],
       [ 4. ,  5. ,  6. ]])
ログイン後にコピー

作成時に型を指定

>>> c = np.array( [ [1,2], [3,4] ], dtype=complex )
>>> c
array([[ 1.+0.j,  2.+0.j],
       [ 3.+0.j,  4.+0.j]])
ログイン後にコピー

特殊な行列を作成

>>> np.zeros( (3,4) )
array([[ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.]])
>>> np.ones( (2,3,4), dtype=np.int16 )                # dtype can also be specified
array([[[ 1, 1, 1, 1],
        [ 1, 1, 1, 1],
        [ 1, 1, 1, 1]],
       [[ 1, 1, 1, 1],
        [ 1, 1, 1, 1],
        [ 1, 1, 1, 1]]], dtype=int16)
>>> np.empty( (2,3) )                                 # uninitialized, output may vary
array([[  3.73603959e-262,   6.02658058e-154,   6.55490914e-260],
       [  5.30498948e-313,   3.14673309e-307,   1.00000000e+000]])
ログイン後にコピー

特定のルールで行列を作成

>>> np.arange( 10, 30, 5 )
array([10, 15, 20, 25])
>>> np.arange( 0, 2, 0.3 )                 # it accepts float arguments
array([ 0. ,  0.3,  0.6,  0.9,  1.2,  1.5,  1.8])
>>> from numpy import pi
>>> np.linspace( 0, 2, 9 )                 # 9 numbers from 0 to 2
array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ,  1.25,  1.5 ,  1.75,  2.  ])
>>> x = np.linspace( 0, 2*pi, 100 )        # useful to evaluate function at lots of points
>>> f = np.sin(x)
ログイン後にコピー

基本的な演算

加算、減算、乗算関数論理演算

>>> a = np.array( [20,30,40,50] )
>>> b = np.arange( 4 )
>>> b
array([0, 1, 2, 3])
>>> c = a-b
>>> c
array([20, 29, 38, 47])
>>> b**2
array([0, 1, 4, 9])
>>> 10*np.sin(a)
array([ 9.12945251, -9.88031624,  7.4511316 , -2.62374854])
>>> a<35
array([ True, True, False, False], dtype=bool)
ログイン後にコピー

行列演算

matlabでは.*,./などがあります

しかし、numpyでは+、-、×、/を使うと加算が優先され、各点間の減算、乗算、除算

2 つの行列 (正方行列) が要素間の演算と行列演算を実行できる場合、要素間の演算が最初に実行されます

>>> import numpy as np
>>> A = np.arange(10,20)
>>> B = np.arange(20,30)
>>> A + B
array([30, 32, 34, 36, 38, 40, 42, 44, 46, 48])
>>> A * B
array([200, 231, 264, 299, 336, 375, 416, 459, 504, 551])
>>> A / B
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
>>> B / A
array([2, 1, 1, 1, 1, 1, 1, 1, 1, 1])
ログイン後にコピー

行列演算を実行する必要がある場合、通常は行列です乗算

>>> A = np.array([1,1,1,1])
>>> B = np.array([2,2,2,2])
>>> A.reshape(2,2)
array([[1, 1],
       [1, 1]])
>>> B.reshape(2,2)
array([[2, 2],
       [2, 2]])
>>> A * B
array([2, 2, 2, 2])
>>> np.dot(A,B)
8
>>> A.dot(B)
8
ログイン後にコピー

よく使用されるグローバル関数

>>> B = np.arange(3)
>>> B
array([0, 1, 2])
>>> np.exp(B)
array([ 1.        ,  2.71828183,  7.3890561 ])
>>> np.sqrt(B)
array([ 0.        ,  1.        ,  1.41421356])
>>> C = np.array([2., -1., 4.])
>>> np.add(B, C)
array([ 2.,  0.,  6.])
ログイン後にコピー

行列インデックススライストラバーサル

>>> a = np.arange(10)**3
>>> a
array([  0,   1,   8,  27,  64, 125, 216, 343, 512, 729])
>>> a[2]
8
>>> a[2:5]
array([ 8, 27, 64])
>>> a[:6:2] = -1000    # equivalent to a[0:6:2] = -1000; from start to position 6, exclusive, set every 2nd element to -1000
>>> a
array([-1000,     1, -1000,    27, -1000,   125,   216,   343,   512,   729])
>>> a[ : :-1]                                 # reversed a
array([  729,   512,   343,   216,   125, -1000,    27, -1000,     1, -1000])
>>> for i in a:
...     print(i**(1/3.))
...
nan
1.0
nan
3.0
nan
5.0
6.0
7.0
8.0
9.0
ログイン後にコピー

行列トラバーサル

>>> import numpy as np
>>> b = np.arange(16).reshape(4, 4)
>>> for row in b:
...  print(row)
... 
[0 1 2 3]
[4 5 6 7]
[ 8  9 10 11]
[12 13 14 15]
>>> for node in b.flat:
...  print(node)
... 
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
ログイン後にコピー

行列の特別な操作

行列の形状を変更する - reshape

>>> a = np.floor(10 * np.random.random((3,4)))
>>> a
array([[ 6.,  5.,  1.,  5.],
       [ 5.,  5.,  8.,  9.],
       [ 5.,  5.,  9.,  7.]])
>>> a.ravel()
array([ 6.,  5.,  1.,  5.,  5.,  5.,  8.,  9.,  5.,  5.,  9.,  7.])
>>> a
array([[ 6.,  5.,  1.,  5.],
       [ 5.,  5.,  8.,  9.],
       [ 5.,  5.,  9.,  7.]])
ログイン後にコピー

size と reshape の違い

resize元の行列を変更します。変形は

>>> a
array([[ 6.,  5.,  1.,  5.],
       [ 5.,  5.,  8.,  9.],
       [ 5.,  5.,  9.,  7.]])
>>> a.reshape(2,-1)
array([[ 6.,  5.,  1.,  5.,  5.,  5.],
       [ 8.,  9.,  5.,  5.,  9.,  7.]])
>>> a
array([[ 6.,  5.,  1.,  5.],
       [ 5.,  5.,  8.,  9.],
       [ 5.,  5.,  9.,  7.]])
>>> a.resize(2,6)
>>> a
array([[ 6.,  5.,  1.,  5.,  5.,  5.],
       [ 8.,  9.,  5.,  5.,  9.,  7.]])
ログイン後にコピー

行列をマージしません

>>> a = np.floor(10*np.random.random((2,2)))
>>> a
array([[ 8.,  8.],
       [ 0.,  0.]])
>>> b = np.floor(10*np.random.random((2,2)))
>>> b
array([[ 1.,  8.],
       [ 0.,  4.]])
>>> np.vstack((a,b))
array([[ 8.,  8.],
       [ 0.,  0.],
       [ 1.,  8.],
       [ 0.,  4.]])
>>> np.hstack((a,b))
array([[ 8.,  8.,  1.,  8.],
       [ 0.,  0.,  0.,  4.]])
ログイン後にコピー

以上がNumPy の一般的なメソッドのまとめの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

numpyのバージョンを簡単に確認する方法 numpyのバージョンを簡単に確認する方法 Jan 19, 2024 am 08:23 AM

Numpy は Python の重要な数学ライブラリであり、効率的な配列演算と科学技術計算機能を提供し、データ分析、機械学習、深層学習などの分野で広く使用されています。 numpy を使用する場合、多くの場合、現在の環境でサポートされている機能を確認するために numpy のバージョン番号を確認する必要があります。この記事では、numpyのバージョンを簡単に確認する方法と具体的なコード例を紹介します。方法 1: numpy に付属の __version__ 属性を使用する numpy モジュールには __ が付属しています

NumPy を PyCharm にインストールし、その機能を最大限に活用する方法に関するステップバイステップのガイド NumPy を PyCharm にインストールし、その機能を最大限に活用する方法に関するステップバイステップのガイド Feb 18, 2024 pm 06:38 PM

NumPy を PyCharm にインストールし、その強力な機能を最大限に活用する方法をステップバイステップで説明します。はじめに: NumPy は、Python の科学計算用の基本ライブラリの 1 つであり、高性能の多次元配列オブジェクトと実行に必要なさまざまな関数を提供します。配列に対する基本的な操作。関数。これは、ほとんどのデータ サイエンスおよび機械学習プロジェクトの重要な部分です。この記事では、NumPy を PyCharm にインストールする方法を紹介し、具体的なコード例を通じてその強力な機能を示します。ステップ 1: PyCharm をインストールする まず、

numpy バ​​ージョンのアップグレード: 詳細でわかりやすいガイド numpy バ​​ージョンのアップグレード: 詳細でわかりやすいガイド Feb 25, 2024 pm 11:39 PM

numpy バ​​ージョンをアップグレードする方法: わかりやすいチュートリアル、具体的なコード例が必要 はじめに: NumPy は科学技術計算に使用される重要な Python ライブラリです。これは、強力な多次元配列オブジェクトと、効率的な数値演算を実行するために使用できる一連の関連関数を提供します。新しいバージョンがリリースされると、新しい機能やバグ修正が常に提供されます。この記事では、インストールされている NumPy ライブラリをアップグレードして最新の機能を入手し、既知の問題を解決する方法について説明します。ステップ 1: 最初に現在の NumPy バージョンを確認する

Linux システムでの system() 関数の使用法の概要 Linux システムでの system() 関数の使用法の概要 Feb 23, 2024 pm 06:45 PM

Linux での system() 関数の概要 Linux システムでは、system() 関数は非常に一般的に使用される関数であり、コマンド ライン コマンドの実行に使用できます。この記事では、system() 関数を詳細に紹介し、いくつかの具体的なコード例を示します。 1. system() 関数の基本的な使用法 system() 関数の宣言は次のとおりです: intsystem(constchar*command); コマンド パラメーターは文字です。

Numpy バ​​ージョン選択ガイド: なぜアップグレードするのですか? Numpy バ​​ージョン選択ガイド: なぜアップグレードするのですか? Jan 19, 2024 am 09:34 AM

データ サイエンス、機械学習、深層学習などの分野の急速な発展に伴い、Python はデータ分析とモデリングの主流の言語になりました。 Python では、NumPy (NumericalPython の略) は、効率的な多次元配列オブジェクトのセットを提供し、pandas、SciPy、scikit-learn などの他の多くのライブラリの基礎となるため、非常に重要なライブラリです。 NumPy を使用する過程で、異なるバージョン間の互換性の問題が発生する可能性があります。

Numpy インストールガイド: インストールの問題を 1 つの記事で解決する Numpy インストールガイド: インストールの問題を 1 つの記事で解決する Feb 21, 2024 pm 08:15 PM

Numpy インストール ガイド: インストールの問題を解決するための 1 つの記事 (具体的なコード例が必要) はじめに: Numpy は Python の強力な科学計算ライブラリであり、配列データを操作するための効率的な多次元配列オブジェクトとツールを提供します。ただし、初心者にとって、Numpy のインストールは混乱を招く可能性があります。この記事では、インストールの問題を迅速に解決するのに役立つ Numpy インストール ガイドを提供します。 1. Python 環境をインストールします。Numpy をインストールする前に、まず Py がインストールされていることを確認する必要があります。

NumPy ライブラリを素早くアンインストールする秘密の方法を明らかにする NumPy ライブラリを素早くアンインストールする秘密の方法を明らかにする Jan 26, 2024 am 08:32 AM

NumPy ライブラリを素早くアンインストールする方法の秘密が明らかになります。具体的なコード例が必要です。NumPy は、データ分析、科学計算、機械学習などの分野で広く使用されている強力な Python 科学計算ライブラリです。ただし、バージョンを更新するため、またはその他の理由で、NumPy ライブラリのアンインストールが必要になる場合があります。この記事では、NumPy ライブラリをすばやくアンインストールする方法をいくつか紹介し、具体的なコード例を示します。方法 1: pip を使用してアンインストールする pip は、インストール、アップグレード、およびアンインストールに使用できる Python パッケージ管理ツールです。

ヌルヌル斬り操作の徹底分析と実戦への応用 ヌルヌル斬り操作の徹底分析と実戦への応用 Jan 26, 2024 am 08:52 AM

numpy のスライス演算方法の詳細な説明と実践的な応用ガイド はじめに: Numpy は Python で最も人気のある科学計算ライブラリの 1 つであり、強力な配列演算関数を提供します。中でもスライス操作はnumpyでよく使われる強力な機能の一つです。この記事では、numpy でのスライス操作の方法を詳しく紹介し、実践的なアプリケーション ガイドを通じてスライス操作の具体的な使用方法を示します。 1. numpy スライス演算方法の紹介 Numpy スライス演算とは、インデックス間隔を指定して配列の部分集合を取得することを指します。その基本的な形式は次のとおりです。

See all articles