Python で 2 層ニューラル ネットワークとパーセプトロン モデルを実装する方法
この記事ではPythonを使って二層ニューラルネットワークとパーセプトロンモデルを実装する方法を共有します具体的な内容と例は以下の通りです
Python 3.4 numpyを使用しているため
ここでは最初にパーセプトロンを実装します。コントローラー モデルは、次の対応を実現するために使用されます
[[0,0,1], ——- 0 [0,1,1], ——- 1 [1,0,1], ——- 0 [1,1,1]] ——- 1
上記のデータからわかるように、入力は 3 チャンネル、出力は 1 チャンネルです。
ここでの活性化関数シグモイド関数f(x)=1/(1+exp(-x))を使用します
導関数の導出は次のとおりです:
L0=W*X; z=f(L0); error=y-z; delta =error * f'(L0) * X; W=W+delta;
Pythonコード
import numpy as np #sigmoid function def nonlin(x, deriv = False): if(deriv==True): return x*(1-x) return 1/(1+np.exp(-x)) # input dataset X=np.array([[0,0,1], [0,1,1], [1,0,1], [1,1,1]]) # output dataset y=np.array([[0,1,0,1]]).T #seed( ) 用于指定随机数生成时所用算法开始的整数值, #如果使用相同的seed( )值,则每次生成的随即数都相同, #如果不设置这个值,则系统根据时间来自己选择这个值, #此时每次生成的随机数因时间差异而不同。 np.random.seed(1) # init weight value with mean 0 syn0 = 2*np.random.random((3,1))-1 for iter in range(1000): # forward propagation L0=X L1=nonlin(np.dot(L0,syn0)) # error L1_error=y-L1 L1_delta = L1_error*nonlin(L1,True) # updata weight syn0+=np.dot(L0.T,L1_delta) print("Output After Training:") print(L1)
出力結果から、基本的に対応関係が成立していることが分かります。
次に、上記のタスクを達成するために 2 層ネットワークが使用されます。ここに隠れ層が追加されます。隠れ層には 4 つのニューロンが含まれています。
import numpy as np def nonlin(x, deriv = False): if(deriv == True): return x*(1-x) else: return 1/(1+np.exp(-x)) #input dataset X = np.array([[0,0,1], [0,1,1], [1,0,1], [1,1,1]]) #output dataset y = np.array([[0,1,1,0]]).T #the first-hidden layer weight value syn0 = 2*np.random.random((3,4)) - 1 #the hidden-output layer weight value syn1 = 2*np.random.random((4,1)) - 1 for j in range(60000): l0 = X #the first layer,and the input layer l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the hidden layer l2 = nonlin(np.dot(l1,syn1)) #the third layer,and the output layer l2_error = y-l2 #the hidden-output layer error if(j%10000) == 0: print "Error:"+str(np.mean(l2_error)) l2_delta = l2_error*nonlin(l2,deriv = True) l1_error = l2_delta.dot(syn1.T) #the first-hidden layer error l1_delta = l1_error*nonlin(l1,deriv = True) syn1 += l1.T.dot(l2_delta) syn0 += l0.T.dot(l1_delta) print "outout after Training:" print l2
これらの事例を読んだ後は、その方法を習得したと思います。さらに興味深い情報については、php 中国語 Web サイトの他の関連記事に注目してください。
関連書籍:
PHP がスタック データ構造とブラケット マッチング アルゴリズムを実装する方法の詳細なコード例
PHP の最も単純な文字列マッチング アルゴリズム、PHP マッチング アルゴリズム_PHP チュートリアル
最も単純な文字列マッチング アルゴリズムのチュートリアルphp で
以上がPython で 2 層ニューラル ネットワークとパーセプトロン モデルを実装する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











ほとんどのテキストエディターを使用して、XMLファイルを開きます。より直感的なツリーディスプレイが必要な場合は、酸素XMLエディターやXMLSPYなどのXMLエディターを使用できます。プログラムでXMLデータを処理する場合、プログラミング言語(Pythonなど)やXMLライブラリ(XML.ETREE.ELEMENTTREEなど)を使用して解析する必要があります。

XMLをPDFに直接変換するアプリケーションは、2つの根本的に異なる形式であるため、見つかりません。 XMLはデータの保存に使用され、PDFはドキュメントを表示するために使用されます。変換を完了するには、PythonやReportLabなどのプログラミング言語とライブラリを使用して、XMLデータを解析してPDFドキュメントを生成できます。

小さなXMLファイルの場合、注釈コンテンツをテキストエディターに直接置き換えることができます。大きなファイルの場合、XMLパーサーを使用してそれを変更して、効率と精度を確保することをお勧めします。 XMLコメントを削除するときは注意してください。コメントを維持すると、通常、コードの理解とメンテナンスが役立ちます。高度なヒントは、XMLパーサーを使用してコメントを変更するためのPythonサンプルコードを提供しますが、特定の実装を使用するXMLライブラリに従って調整する必要があります。 XMLファイルを変更する際のエンコード問題に注意してください。 UTF-8エンコードを使用して、エンコード形式を指定することをお勧めします。

XMLフォーマットツールは、読みやすさと理解を向上させるために、ルールに従ってコードを入力できます。ツールを選択するときは、カスタマイズ機能、特別な状況の処理、パフォーマンス、使いやすさに注意してください。一般的に使用されるツールタイプには、オンラインツール、IDEプラグイン、コマンドラインツールが含まれます。

モバイルには、単純で直接無料のXMLからPDFツールはありません。必要なデータ視覚化プロセスには、複雑なデータの理解とレンダリングが含まれ、市場のいわゆる「無料」ツールのほとんどは経験がありません。コンピューター側のツールを使用したり、クラウドサービスを使用したり、アプリを開発してより信頼性の高い変換効果を取得することをお勧めします。

Mobile XMLからPDFへの速度は、次の要因に依存します。XML構造の複雑さです。モバイルハードウェア構成変換方法(ライブラリ、アルゴリズム)コードの品質最適化方法(効率的なライブラリ、アルゴリズムの最適化、キャッシュデータ、およびマルチスレッドの利用)。全体として、絶対的な答えはなく、特定の状況に従って最適化する必要があります。

単一のアプリケーションで携帯電話でXMLからPDF変換を直接完了することは不可能です。クラウドサービスを使用する必要があります。クラウドサービスは、2つのステップで達成できます。1。XMLをクラウド内のPDFに変換し、2。携帯電話の変換されたPDFファイルにアクセスまたはダウンロードします。

携帯電話でXMLをPDFに直接変換するのは簡単ではありませんが、クラウドサービスの助けを借りて実現できます。軽量モバイルアプリを使用してXMLファイルをアップロードし、生成されたPDFを受信し、クラウドAPIで変換することをお勧めします。クラウドAPIはサーバーレスコンピューティングサービスを使用し、適切なプラットフォームを選択することが重要です。 XMLの解析とPDF生成を処理する際には、複雑さ、エラー処理、セキュリティ、および最適化戦略を考慮する必要があります。プロセス全体では、フロントエンドアプリとバックエンドAPIが連携する必要があり、さまざまなテクノロジーをある程度理解する必要があります。
