JavaScript データ構造の単一リンク リストと循環リンク リストの例を共有する
この記事では、JavaScript の単一リンク リストと循環リンク リストのデータ構造を中心に、JavaScript がどのように実装しているのかについても詳しく紹介していますので、興味のある方はぜひ参考にしてください。
本題に入り、リンク リストのデータ構造に関する知識を簡単に紹介します。
リンク リストは、物理ストレージ ユニット内の非線形かつ不連続なデータ構造です (データ ロジックでは線形です)。その A ノードは、データ フィールドとポインター フィールドの 2 つのフィールドで構成されます。実際のデータはデータ フィールドに格納され、ポインタ フィールドにはリンク リスト内の次の要素または前の要素を指すポインタ情報が格納されます。ポインタが存在するからこそ、連結リストの格納は物理単位で不連続となる。
リンクリストの長所と短所も同様に明らかです。線形リストと比較すると、リンク リストは、要素の移動が必要な線形リスト (配列) とは異なり、ポインタ情報を変更するだけで操作を完了できるため、ノードの追加と削除がより効率的です。同様に、リンクされたリストの長さは理論的には無限で (メモリ容量の範囲内で)、長さは動的に変更できるため、線形リストに比べて大きな利点があります。 同様に、線形テーブルはノードにランダムにアクセスできず、リンク リストに沿ったポインター トラバーサル クエリを通じてのみアクセスできるため、データ要素へのアクセス効率は比較的低くなります。
以下は、JS 部分にカプセル化された一般的なメソッドと説明です
:
Method | Description |
---|---|
append(element) | リンクされたリストの最後にノード要素を追加します |
insert (position, element) | 位置positionにノード要素を挿入 |
removeAt(position) | インデックス値positionに従ってノードを削除 |
remove(element) | 指定されたノード要素を検索して削除します |
remove() | リンクリストの最後のノードを削除 |
indexOf(element) | 指定されたノード要素のインデックス値を見つけて返す |
isEmpty() | リンクされたリストは空です |
size() | リンクされたリストの長さを取得します |
toString() | 文字列出力に変換します |
getHead() | ヘッドノードを取得します |
getTail () | Get Tail ノード |
一般的に使用されるさまざまなメソッドのアルゴリズムの説明は、結局のところ、非常に基本的な知識なので、誰でも簡単に読んで理解できると思います。
単一リンクリスト:
function LinkedList(){ /*节点定义*/ var Node = function(element){ this.element = element; //存放节点内容 this.next = null; //指针 } var length = 0, //存放链表长度 head = null; //头指针 this.append = function(element){ var node = new Node(element), current; //操作所用指针 if (!head){ head = node; }else { current = head; while(current.next){ current = current.next; } current.next = node; } length++; return true; }; this.insert = function(position, element){ if (position >= 0 && position <= length) { var node = new Node(element), current = head, previous, index = 0; if(position === 0){ node.next = current; head = node; }else{ while(index++ < position){ previous = current; current = current.next; } node.next = current; previous.next = node; } length++; return true; }else{ return false; } }; this.removeAt = function(position){ if(position > -1 && position < length){ var current = head, previous, index = 0; if (position === 0) { head = current.next; }else{ while (index++ < position){ previous = current; current = current.next; } previous.next = current.next; }; length--; return current.element; }else{ return null; } }; this.remove = function(element){ var current = head, previous; if(element === current.element){ head = current.next; length--; return true; } previous = current; current = current.next; while(current){ if(element === current.element){ previous.next = current.next; length--; return true; }else{ previous = current; current = current.next; } } return false; }; this.remove = function(){ if(length < 1){ return false; } var current = head, previous; if(length == 1){ head = null; length--; return current.element; } while(current.next !== null){ previous = current; current = current.next; } previous.next = null; length--; return current.element; }; this.indexOf = function(element){ var current = head, index = 0; while(current){ if(element === current.element){ return index; } index++; current = current.next; } return false; }; this.isEmpty = function(){ return length === 0; }; this.size = function(){ return length; }; this.toString = function(){ var current = head, string = ''; while(current){ string += current.element; current = current.next; } return string; }; this.getHead = function(){ return head; } }
循環リンクリスト: 単一リンクリストに基づいて、末尾ノードのポインタを先頭ノードに向けて循環リンクリストを形成します。循環リンク リスト内の任意のノードから開始して、リンク リスト全体をたどることができます。
function CircularLinkedList(){ var Node = function(element){ this.element = element; this.next = null; } var length = 0, head = null; this.append = function(element){ var node = new Node(element), current; if (!head) { head = node; node.next = head; }else{ current = head; while(current.next !== head){ current = current.next; } current.next = node; node.next = head; }; length++; return true; }; this.insert = function(position, element){ if(position > -1 && position < length){ var node = new Node(element), index = 0, current = head, previous; if (position === 0) { node.next = head; head = node; }else{ while(index++ < position){ previous = current; current = current.next; } previous.next = node; node.next = current; }; length++; return true; }else{ return false; } }; this.removeAt = function(position){ if(position > -1 && position < length){ var current = head, previous, index = 0; if (position === 0) { head = current.next; }else{ while (index++ < position){ previous = current; current = current.next; } previous.next = current.next; }; length--; return current.element; }else{ return null; } }; this.remove = function (element){ var current = head, previous, indexCheck = 0; while(current && indexCheck < length){ if(current.element === element){ if(indexCheck == 0){ head = current.next; length--; return true; }else{ previous.next = current.next; length--; return true; } }else{ previous = current; current = current.next; indexCheck++; } } return false; }; this.remove = function(){ if(length === 0){ return false; } var current = head, previous, indexCheck = 0; if(length === 1){ head = null; length--; return current.element; } while(indexCheck++ < length){ previous = current; current = current.next; } previous.next = head; length--; return current.element; }; this.indexOf = function(element){ var current = head, index = 0; while(current && index < length){ if(current.element === element){ return index; }else{ index++; current = current.next; } } return false; }; this.isEmpty = function(){ return length === 0; }; this.size = function(){ return length; }; this.toString = function(){ var current = head, string = '', indexCheck = 0; while(current && indexCheck < length){ string += current.element; current = current.next; indexCheck++; } return string; }; }
使用方法:
クラス外の拡張メソッド:
関連推奨事項:
JavaScriptデータ構造における二重リンクリストの使用定義の例
JavaScriptデータ構造における優先キューと循環キュー
JavaScriptのデータ構造の二分探索木の定義と表現方法を詳しく解説
以上がJavaScript データ構造の単一リンク リストと循環リンク リストの例を共有するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









顔の検出および認識テクノロジーは、すでに比較的成熟しており、広く使用されているテクノロジーです。現在、最も広く使用されているインターネット アプリケーション言語は JS ですが、Web フロントエンドでの顔検出と認識の実装には、バックエンドの顔認識と比較して利点と欠点があります。利点としては、ネットワーク インタラクションの削減とリアルタイム認識により、ユーザーの待ち時間が大幅に短縮され、ユーザー エクスペリエンスが向上することが挙げられます。欠点としては、モデル サイズによって制限されるため、精度も制限されることが挙げられます。 js を使用して Web 上に顔検出を実装するにはどうすればよいですか? Web 上で顔認識を実装するには、JavaScript、HTML、CSS、WebRTC など、関連するプログラミング言語とテクノロジに精通している必要があります。同時に、関連するコンピューター ビジョンと人工知能テクノロジーを習得する必要もあります。 Web 側の設計により、次の点に注意してください。

Java で複雑なデータ構造を使用する場合、Comparator を使用して柔軟な比較メカニズムを提供します。具体的な手順には、コンパレータ クラスの定義、比較ロジックを定義するための比較メソッドの書き換えが含まれます。コンパレータインスタンスを作成します。 Collections.sort メソッドを使用して、コレクションとコンパレータのインスタンスを渡します。

データ構造とアルゴリズムは Java 開発の基礎です。この記事では、Java の主要なデータ構造 (配列、リンク リスト、ツリーなど) とアルゴリズム (並べ替え、検索、グラフ アルゴリズムなど) について詳しく説明します。これらの構造は、スコアを保存するための配列、買い物リストを管理するためのリンク リスト、再帰を実装するためのスタック、スレッドを同期するためのキュー、高速検索と認証のためのツリーとハッシュ テーブルの使用など、実際の例を通じて説明されています。これらの概念を理解すると、効率的で保守しやすい Java コードを作成できるようになります。

参照型は Go 言語の特別なデータ型であり、その値にはデータそのものが直接格納されるのではなく、格納されたデータのアドレスが格納されます。 Go 言語では、参照型にはスライス、マップ、チャネル、ポインターが含まれます。 Go 言語のメモリ管理とデータ転送方法を理解するには、参照型を深く理解することが重要です。この記事では具体的なコード例を組み合わせて、Go言語における参照型の特徴と使い方を紹介します。 1. スライス スライスは、Go 言語で最も一般的に使用される参照型の 1 つです。

js と vue の関係: 1. Web 開発の基礎としての JS、2. フロントエンド フレームワークとしての Vue.js の台頭、3. JS と Vue の補完関係、4. JS と Vue の実用化ビュー。

AVL ツリーは、高速かつ効率的なデータ操作を保証するバランスのとれた二分探索ツリーです。バランスを達成するために、左回転と右回転の操作を実行し、バランスに反するサブツリーを調整します。 AVL ツリーは高さバランシングを利用して、ツリーの高さがノード数に対して常に小さくなるようにすることで、対数時間計算量 (O(logn)) の検索操作を実現し、大規模なデータ セットでもデータ構造の効率を維持します。

JS-Torch の概要 JS-Torch は、構文が PyTorch に非常に似ている深層学習 JavaScript ライブラリです。これには、完全に機能するテンソル オブジェクト (追跡された勾配で使用可能)、深層学習レイヤーと関数、および自動微分エンジンが含まれています。 JS-Torch は JavaScript での深層学習の研究に適しており、深層学習の開発を加速するための便利なツールや機能を多数提供します。 Image PyTorch は、Meta の研究チームによって開発および保守されているオープンソースの深層学習フレームワークです。ニューラル ネットワーク モデルを構築およびトレーニングするための豊富なツールとライブラリのセットを提供します。 PyTorch は、シンプル、柔軟、そして使いやすいように設計されており、その動的な計算グラフ機能により、

Java コレクション フレームワークの概要 Java コレクション フレームワークは Java プログラミング言語の重要な部分であり、データを保存および管理できる一連のコンテナ クラス ライブラリを提供します。これらのコンテナ クラス ライブラリには、さまざまなシナリオでのデータ ストレージと処理のニーズを満たすために、さまざまなデータ構造があります。コレクション フレームワークの利点は、統一されたインターフェイスが提供され、開発者が異なるコンテナ クラス ライブラリを同じ方法で操作できるため、開発の困難さが軽減されることです。 Java コレクション フレームワークのデータ構造 Java コレクション フレームワークにはさまざまなデータ構造が含まれており、それぞれに独自の特性と適用可能なシナリオがあります。以下に、一般的な Java コレクション フレームワークのデータ構造をいくつか示します。 1. リスト: リストは、要素を繰り返すことができる順序付けされたコレクションです。李
