Python クローラーを使用して JS ロードされたデータ Web ページをクロールする方法

php中世界最好的语言
リリース: 2018-03-06 11:39:18
オリジナル
5137 人が閲覧しました

今回は、Python クローラーを使用して JS ロードされたデータ Web ページをクロールする方法を説明します。Python クローラーを使用して JS ロードされたデータ Web ページをクロールするための注意事項は何ですか。以下は実際のケースです。

例: Jianshu: Paste_Image.png Jianshu Web サイト上の任意の著者のすべての記事をクロールするプログラムを作成してから、すべての記事に対して単語分割統計を実行してみましょう。統計プログラムの実行結果は記事内で確認できます。 : 本の 360 の記事で使用されている単語を数えました。

Python パッケージパッケージ名関数が必要です。Web ページへのブラウザー アクセスをシミュレートするために selenium が使用されます。lxml は、HTML ページを解析して抽出するために使用されます。 data jieba は、URL を解析するために記事のテキスト TLD をセグメント化するために使用されます。たとえば、ドメインを抽出するには、phantomjs、selenium、および Paste_Image.png をダウンロードする必要があります

上の任意の著者のすべての記事をクロールするプログラムを作成しましょう。 Jianshu の Web サイトにアクセスし、すべての記事に対して単語分割統計を実行します

プログラム動作統計の結果については記事を参照してください :
Peng Xiaoliu の Jianshu の 360 個の記事で使用されている単語を数えました

必要な Python パッケージ

関数

selenium に使用phantomjs と連携して、Web ページへのブラウザーアクセスをシミュレートします

lxml HTML ページの解析、データの抽出に使用されます

jieba 記事テキストのセグメント化に使用されます

tld ドメインの抽出など、URL を解析します

また、phantomjs をダウンロードする必要がありますSelenium と phantomjs の使用コードに反映されています

ダウンロードアドレス: http://phantomjs.org/

以下のコードでは、データの保存にデータベースではなくファイルを使用しているため、コード量が比較的多く、主要なコードは多くありません

コードに直接移動します


# -*-coding:utf-8-*- 
import json 
import os, sys 
from random import randint 
from collections import Counter 
import jieba 
from lxml import etree 
from selenium import webdriver 
import time 
from tld import get_tld 
path = os.path.abspath(os.path.dirname(file)) 
class Spider(): 
''' 
获取简书作者的全部文章页面,并解析 
''' 
def init(self, start_url):'''我这里使用文件保存数据,没有使用数据库保存数据所有需要初始化文件保存路径使用本程序的你可以把文件保存改成数据库保存,建议使用nosql方便保存start_url:作者文章列表页面,比如http://www.jianshu.com/u/65fd4e5d930d:return:'''self.start_url = start_urlres = get_tld(self.start_url, as_object=True, fix_protocol=True)self.domain = "{}.{}".format(res.subdomain, res.tld)self.user_id = self.start_url.split("/")[-1]# 保存作者文章列表html页面post_list_dir = '{}/post-list'.format(path)self.post_lists_html = '{}/post_list_{}.html'.format(post_list_dir, self.user_id)# 保存作者所有文章的urlself.post_lists_urls = '{}/urls_{}.dat'.format(post_list_dir, self.user_id)# 保存文章原始网页:self.posts_html_dir = '{}/post-html/{}'.format(path, self.user_id)# 保存文章解析后的内容:self.posts_data_dir = '{}/post-data/{}'.format(path,self.user_id)# 保存文章统计后的结果:self.result_dir = '{}/result'.format(path)self.executable_path='{}/phantomjs-2.1.1-linux-x86_64/bin/phantomjs'.format(path)# mkdirif not os.path.exists(self.posts_html_dir): os.makedirs(self.posts_html_dir)if not os.path.exists(self.posts_data_dir): os.makedirs(self.posts_data_dir)if not os.path.exists(post_list_dir): os.makedirs(post_list_dir)if not os.path.exists(self.result_dir): os.makedirs(self.result_dir)# 网上随笔找的免费代理ipself.ips = ['61.167.222.17:808','58.212.121.72:8998', '111.1.3.36:8000', '125.117.133.74:9000'] 
def post_list_page(self):'''获取文章列表页面,以及文章链接:return:'''obj = webdriver.PhantomJS(executable_path=self.executable_path)obj.set_page_load_timeout(30)obj.maximize_window()# 随机一个代理ipip_num = len(self.ips)ip = self.ips[randint(0,ip_num-1)]obj.http_proxy = ipobj.get(self.start_url)# 文章总数量sel = etree.HTML(obj.page_source)r = sel.xpath("//div[@class='main-top']//div[@class='info']//li[3]//p//text()")if r: crawl_post_n = int(r[0])else: print("[Error] 提取文章总书的xpath不正确") sys.exit()n = crawl_post_n/9i = 1while n: t = randint(2,5) time.sleep(t) js = "var q=document.body.scrollTop=100000" # 页面一直下滚 obj.execute_script(js) n -= 1 i += 1# 然后把作者文章列表页面的html(保存到数据库,或文本保存)of = open(self.post_lists_html, "w")of.write(obj.page_source)of.close()# 我们也顺便把作者所有的文章链接提取出来(保存到数据库,或文本保存)of = open(self.post_lists_urls, "w")sel = etree.HTML(obj.page_source)results = sel.xpath("//div[@id='list-container']//li//a[@class='title']/@href")for result in results: of.write("http://{}{}".format(self.domain, result.strip())) of.write("/n")of.close() 
def posts_html(self):'''获取文章页面html:return:'''of = open(self.post_lists_urls)urls = of.readlines()ip_num = len(self.ips)obj = webdriver.PhantomJS(executable_path=self.executable_path)obj.set_page_load_timeout(10)obj.maximize_window()for url in urls: # 随机一个代理ip ip = self.ips[randint(0,ip_num-1)] obj.http_proxy = ip url = url.strip() print("代理ip:{}".format(ip)) print("网页:{}".format(url)) try: obj.get(url) except: print("Error:{}".format(url)) post_id = url.split("/")[-1] of = open("{}/{}_{}.html".format(self.posts_html_dir, obj.title, post_id), "w") of.write(obj.page_source) of.close() t = randint(1,5) time.sleep(t) 
def page_parsing(self):'''html解析:return:'''# 只获取匹配的第一个xpath_rule_0 ={ "author":"//div[@class='author']//span[@class='name']//text()", # 作者名字 "author_tag":"//div[@class='author']//span[@class='tag']//text()",# 作者标签 "postdate":"//div[@class='author']//span[@class='publish-time']//text()", # 发布时间 "word_num":"//div[@class='author']//span[@class='wordage']//text()",#字数 "notebook":"//div[@class='show-foot']//a[@class='notebook']/span/text()",#文章属于的目录 "title":"//div[@class='article']/h1[@class='title']//text()",#文章标题}# 获取匹配的所有,并拼接成一个字符串的xpath_rule_all_tostr ={ "content":"//div[@class='show-content']//text()",#正文}# 获取匹配的所有,保存数组形式xpath_rule_all ={ "collection":"//div[@class='include-collection']//a[@class='item']//text()",#收入文章的专题}# 遍历所有文章的html文件,如果保存在数据库的则直接查询出来list_dir = os.listdir(self.posts_html_dir)for file in list_dir: file = "{}/{}".format(self.posts_html_dir, file) if os.path.isfile(file): of = open(file) html = of.read() sel = etree.HTML(html) of.close() # 解析 post_id = file.split("_")[-1].strip(".html") doc = {'url':'http://{}/p/{}'.format(self.domain,post_id)} for k,rule in xpath_rule_0.items(): results = sel.xpath(rule) if results: doc[k] = results[0] else: doc[k] = None for k,rule in xpath_rule_all_tostr.items(): results = sel.xpath(rule) if results: doc[k] = "" for result in results: if result.strip(): doc[k] = "{}{}".format(doc[k], result) else: doc[k] = None for k,rule in xpath_rule_all.items(): results = sel.xpath(rule) if results: doc[k] = results else: doc[k] = None if doc["word_num"]: doc["word_num"] = int(doc["word_num"].strip('字数').strip()) else: doc["word_num"] = 0 # 保存到数据库或者文件中 of = open("{}/{}.json".format(self.posts_data_dir, post_id), "w") of.write(json.dumps(doc)) of.close() 
def statistics(self):&#39;&#39;&#39;分开对每篇文章的进行分词统计,也统计全部文章分词:return: &#39;&#39;&#39;# 遍历所有文章的html文件,如果保存在数据库的则直接查询出来word_sum = {} #正文全部词语统计title_word_sum = {} #标题全部词语统计post_word_cnt_list = [] #每篇文章使用的词汇数量# 正文统计数据保存list_dir = os.listdir(self.posts_data_dir)for file in list_dir: file = "{}/{}".format(self.posts_data_dir, file) if os.path.isfile(file): of = open(file) str = of.read() doc = json.loads(str) # 正文统计:精确模式,默认hi精确模式,所以可以不指定cut_all=False words = jieba.cut(doc["content"], cut_all=False) data = dict(Counter(words)) data = sorted(data.iteritems(), key=lambda d: d[1], reverse=True) word_cnt = 0 for w in data: # 只统计超过1个字的词语 if len(w[0]) < 2: continue # 统计到全部文章词语中 if w[0] in word_sum: word_sum[w[0]]["cnt"] += w[1] word_sum[w[0]]["post_cnt"] += 1 else: word_sum[w[0]] = {} word_sum[w[0]]["cnt"] = w[1] word_sum[w[0]]["post_cnt"] = 1 word_cnt += 1 post_word_cnt_list.append((word_cnt, doc["postdate"], doc["title"], doc["url"])) # 标题统计:精确模式,默认hi精确模式,所以可以不指定cut_all=False words = jieba.cut(doc["title"], cut_all=False) data = dict(Counter(words)) data = sorted(data.iteritems(), key=lambda d: d[1], reverse=True) for w in data: # 只统计超过1个字的词语 if len(w[0]) < 2: continue # 统计到全部文章词语中 if w[0] in title_word_sum: title_word_sum[w[0]]["cnt"] += w[1] title_word_sum[w[0]]["post_cnt"] += 1 else: title_word_sum[w[0]] = {} title_word_sum[w[0]]["cnt"] = w[1] title_word_sum[w[0]]["post_cnt"] = 1 post_word_cnt_list = sorted(post_word_cnt_list, key=lambda d: d[0], reverse=True)wf = open("{}/content_statis_{}.dat".format(self.result_dir, self.user_id), "w")wf.write("| 词语 | 发布日期 | 标题 | 链接 |/n")for pw in post_word_cnt_list: wf.write("| {} | {} | {}| {}|/n".format(pw[0],pw[1],pw[2],pw[3]))wf.close()# 全部文章正文各词语 按使用次数 统计结果wf = open("{}/content_statis_sum_use-num_{}.dat".format(self.result_dir, self.user_id), "w")word_sum_t = sorted(word_sum.iteritems(), key=lambda d: d[1][&#39;cnt&#39;], reverse=True)wf.write("| 分词 | 使用次数 | 使用的文章数量|/n")for w in word_sum_t: wf.write("| {} | {} | {}|/n".format(w[0], w[1]["cnt"], w[1]["post_cnt"]))wf.close()# 全部文章正文各词语 按使用文章篇数 统计结果wf = open("{}/content_statis_sum_post-num_{}.dat".format(self.result_dir, self.user_id), "w")word_sum_t = sorted(word_sum.iteritems(), key=lambda d: d[1][&#39;post_cnt&#39;], reverse=True)wf.write("| 分词 | 使用的文章数量 | 使用次数 |/n")for w in word_sum_t: wf.write("| {} | {} | {}|/n".format(w[0], w[1]["post_cnt"], w[1]["cnt"]))wf.close() 
# 全部文章title各词语 按使用次数 统计结果wf = open("{}/title_statis_sum_use-num_{}.dat".format(self.result_dir,self.user_id), "w")title_word_sum_t = sorted(title_word_sum.iteritems(), key=lambda d: d[1][&#39;cnt&#39;], reverse=True)wf.write("| 分词 | 使用次数 | 使用的文章数量|/n")for w in title_word_sum_t: wf.write("| {} | {} | {}|/n".format(w[0], w[1]["cnt"], w[1]["post_cnt"]))wf.close()# 全部文章title各词语 按使用次数 统计结果wf = open("{}/title_statis_sum_post-num_{}.dat".format(self.result_dir, self.user_id), "w")title_word_sum_t = sorted(title_word_sum.iteritems(), key=lambda d: d[1][&#39;post_cnt&#39;], reverse=True)wf.write("| 分词 | 使用的文章数量 | 使用次数 |/n")for w in title_word_sum_t: wf.write("| {} | {} | {}|/n".format(w[0], w[1]["post_cnt"], w[1]["cnt"]))wf.close()print("一共统计文章:{} 篇".format(len(list_dir)))print("所有正文-使用了2字及以上词语:{} 个".format(len(word_sum_t)))print("所有标题-使用了2字及以上词语:{} 个".format(len(title_word_sum_t))) 
if name == &#39;main&#39;: 
sp = Spider(start_url="http://www.jianshu.com/u/65fd4e5d930d") 
print("获取作者文章列表页面...") 
sp.post_list_page() 
print("获取作者所有文章页面...") 
#sp.posts_html() 
print("解析作者所有文章页面...") 
#sp.page_parsing() 
print("简单统计分析文章词汇...") 
#sp.statistics()
ログイン後にコピー

プログラム実行統計の結果については記事を参照してください: Xiaoliu Jianshuの360の記事で使用されているPeng Wordを数えました

これらの事例を読んだ後は、より興味深い情報については、php 中国語 Web サイトの他の関連記事に注目してください。

関連記事:

div タグのマージントップ要素の失敗に対する解決策

iframe 子ページページのポップアップレイヤー効果をブロックするために親ページを操作する方法

方法モバイルアダプティブWebページの実装

以上がPython クローラーを使用して JS ロードされたデータ Web ページをクロールする方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

関連ラベル:
ソース:php.cn
このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
最新の問題
人気のチュートリアル
詳細>
最新のダウンロード
詳細>
ウェブエフェクト
公式サイト
サイト素材
フロントエンドテンプレート
私たちについて 免責事項 Sitemap
PHP中国語ウェブサイト:福祉オンライン PHP トレーニング,PHP 学習者の迅速な成長を支援します!