ホームページ バックエンド開発 PHPチュートリアル JS は動的プログラミングのナップザック アルゴリズムを実装します

JS は動的プログラミングのナップザック アルゴリズムを実装します

Mar 22, 2018 pm 03:28 PM
javascript 動的プログラミング アルゴリズム

インタビュー中にバックパックのアルゴリズムに関する質問に遭遇しました。これは、バックパックの容量とさまざまなアイテムの重量を考慮して、配置されるアイテムの総質量を可能な限り近づける必要があります。バックパックの容量以上、最小限のアイテムを入れてください。この記事では主に JS で実装された動的プログラミングのバックパック アルゴリズムについて説明します。お役に立てれば幸いです。 function Backpack() {

            var totalWeight;//背包的总质量
            var goodsList = [];//可供选择的物品列表
            var bestMethodList = []//最优解的物品列表
            //设置背包总重量
            this.setTotalWeight = function(t) {
                totalWeight = t
            }
            //加物品
            this.addThing = function(goods) {
                goodsList.push(goods)
            }
            //减物品
            this.removeThing = function(goods) {
                var index = null
                goodsList.forEach(function(everyGoods,i){
                    if(everyGoods === goods){
                        index = i
                    }
                })
                if(index){
                    goodsList.splice(index,1)
                }
                else{
                    return false
                }
            }
            //计算最优解背包的重量
            this.count = function() {
                return getListWeight(bestMethodList)
            }
            //传入物品列表,返回该列表所有物品总质量
            function getListWeight(list) {
                var weight = 0
                list.forEach(function(everyGoods, i) {
                    weight += everyGoods.weight
                })
                return weight
            }
            //满足尽可能接近背包重量且放入物品最少的方法
            this.getBestMethod = function() {
                var arr = []
                //这里只需要两个参数 设置的重质量totalWeight和可供选择的物品goodsList
                goodsList.forEach(function(everyGoods, i) {
                    arr[i] = []//创建一个二维数组,放对应位置的最优解
                    for (let j = 0; j < totalWeight; j++) {
                        if(j+1 > everyGoods.weight) {
                            var newArr = [everyGoods]
                            if(i > 0){
                                var overWeight = j - everyGoods.weight
                                arr[i - 1][overWeight] ? newArr = newArr.concat(arr[i-1][overWeight]) : null
                                if(getListWeight(newArr) < getListWeight(arr[i-1][j])) {
                                    newArr = arr[i-1][j]
                                }
                                else if(getListWeight(newArr) === getListWeight(arr[i - 1][j]) && arr[i-1][j].length < newArr.length){
                                    newArr = arr[i-1][j]
                                }
                            }
                            arr[i][j] = newArr
                        }
                        else{
                            if(i === 0){
                                arr[i][j] = null
                            }
                            else{
                                arr[i][j] = arr[i-1][j]
                            }
                        }
                    }
                })
                return bestMethodList = arr[goodsList.length-1][totalWeight-1]
            }
        }
        //测试
        var myBag = new Backpack()
        myBag.setTotalWeight(10)
        myBag.addThing({name:&#39;apple&#39;,weight:1})
        myBag.addThing({ name: &#39;tomato&#39;, weight:3 })
        myBag.addThing({ name: &#39;ball&#39;, weight: 5 })
        myBag.addThing({ name: &#39;eggplant&#39;, weight: 4 })
        console.log(myBag.getBestMethod())//最优解的数组
        console.log(myBag.count())//最优解的质量
ログイン後にコピー

その核心は、局所最適解を保存するために 2 次元配列を作成し、それをゆっくりと推定し、最終的に最終的な最適解を取得することです。

arr[i-1][バックパックの残りの質量] + 現在のアイテム (concat を使用)

3. 新しい arr を前の行の j 列の arr と比較します (初期条件が異なる場合は、変更するだけです)。 4. Arr は順番に取得されます

関連する推奨事項:

JavaScript 高度なアルゴリズム動的プログラミングの例分析

PHP アルゴリズムの学習動的プログラミング

0-1 ナップザック問題を解くための PHP 動的プログラミングの例分析_PHP チュートリアル

以上がJS は動的プログラミングのナップザック アルゴリズムを実装しますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

CLIP-BEVFormer: BEVFormer 構造を明示的に監視して、ロングテール検出パフォーマンスを向上させます。 CLIP-BEVFormer: BEVFormer 構造を明示的に監視して、ロングテール検出パフォーマンスを向上させます。 Mar 26, 2024 pm 12:41 PM

上記および筆者の個人的な理解: 現在、自動運転システム全体において、認識モジュールが重要な役割を果たしている。道路を走行する自動運転車は、認識モジュールを通じてのみ正確な認識結果を得ることができる。下流の規制および制御モジュール自動運転システムでは、タイムリーかつ正確な判断と行動決定が行われます。現在、自動運転機能を備えた自動車には通常、サラウンドビューカメラセンサー、ライダーセンサー、ミリ波レーダーセンサーなどのさまざまなデータ情報センサーが搭載されており、さまざまなモダリティで情報を収集して正確な認識タスクを実現しています。純粋な視覚に基づく BEV 認識アルゴリズムは、ハードウェア コストが低く導入が容易であるため、業界で好まれており、その出力結果はさまざまな下流タスクに簡単に適用できます。

C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 Jun 03, 2024 pm 01:25 PM

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

C++sort 関数の基礎となる原則とアルゴリズムの選択を調べる C++sort 関数の基礎となる原則とアルゴリズムの選択を調べる Apr 02, 2024 pm 05:36 PM

C++sort 関数の最下層はマージ ソートを使用し、その複雑さは O(nlogn) で、クイック ソート、ヒープ ソート、安定したソートなど、さまざまなソート アルゴリズムの選択肢を提供します。

人工知能は犯罪を予測できるのか? CrimeGPT の機能を調べる 人工知能は犯罪を予測できるのか? CrimeGPT の機能を調べる Mar 22, 2024 pm 10:10 PM

人工知能 (AI) と法執行機関の融合により、犯罪の予防と検出の新たな可能性が開かれます。人工知能の予測機能は、犯罪行為を予測するためにCrimeGPT (犯罪予測技術) などのシステムで広く使用されています。この記事では、犯罪予測における人工知能の可能性、その現在の応用、人工知能が直面する課題、およびこの技術の倫理的影響について考察します。人工知能と犯罪予測: 基本 CrimeGPT は、機械学習アルゴリズムを使用して大規模なデータセットを分析し、犯罪がいつどこで発生する可能性があるかを予測できるパターンを特定します。これらのデータセットには、過去の犯罪統計、人口統計情報、経済指標、気象パターンなどが含まれます。人間のアナリストが見逃す可能性のある傾向を特定することで、人工知能は法執行機関に力を与えることができます

改良された検出アルゴリズム: 高解像度の光学式リモートセンシング画像でのターゲット検出用 改良された検出アルゴリズム: 高解像度の光学式リモートセンシング画像でのターゲット検出用 Jun 06, 2024 pm 12:33 PM

01 今後の概要 現時点では、検出効率と検出結果の適切なバランスを実現することが困難です。我々は、光学リモートセンシング画像におけるターゲット検出ネットワークの効果を向上させるために、多層特徴ピラミッド、マルチ検出ヘッド戦略、およびハイブリッドアテンションモジュールを使用して、高解像度光学リモートセンシング画像におけるターゲット検出のための強化されたYOLOv5アルゴリズムを開発しました。 SIMD データセットによると、新しいアルゴリズムの mAP は YOLOv5 より 2.2%、YOLOX より 8.48% 優れており、検出結果と速度のバランスがより優れています。 02 背景と動機 リモート センシング技術の急速な発展に伴い、航空機、自動車、建物など、地表上の多くの物体を記述するために高解像度の光学式リモート センシング画像が使用されています。リモートセンシング画像の判読における物体検出

58 ポートレート プラットフォームの構築におけるアルゴリズムの適用 58 ポートレート プラットフォームの構築におけるアルゴリズムの適用 May 09, 2024 am 09:01 AM

1. 58 Portraits プラットフォーム構築の背景 まず、58 Portraits プラットフォーム構築の背景についてお話ししたいと思います。 1. 従来のプロファイリング プラットフォームの従来の考え方ではもはや十分ではありません。ユーザー プロファイリング プラットフォームを構築するには、複数のビジネス分野からのデータを統合して、ユーザーの行動や関心を理解するためのデータ マイニングも必要です。最後に、ユーザー プロファイル データを効率的に保存、クエリ、共有し、プロファイル サービスを提供するためのデータ プラットフォーム機能も必要です。自社構築のビジネス プロファイリング プラットフォームとミドルオフィス プロファイリング プラットフォームの主な違いは、自社構築のプロファイリング プラットフォームは単一のビジネス ラインにサービスを提供し、オンデマンドでカスタマイズできることです。ミッドオフィス プラットフォームは複数のビジネス ラインにサービスを提供し、複雑な機能を備えていることです。モデリングを提供し、より一般的な機能を提供します。 2.58 中間プラットフォームのポートレート構築の背景のユーザーのポートレート 58

簡単な JavaScript チュートリアル: HTTP ステータス コードを取得する方法 簡単な JavaScript チュートリアル: HTTP ステータス コードを取得する方法 Jan 05, 2024 pm 06:08 PM

JavaScript チュートリアル: HTTP ステータス コードを取得する方法、特定のコード例が必要です 序文: Web 開発では、サーバーとのデータ対話が頻繁に発生します。サーバーと通信するとき、多くの場合、返された HTTP ステータス コードを取得して操作が成功したかどうかを判断し、さまざまなステータス コードに基づいて対応する処理を実行する必要があります。この記事では、JavaScript を使用して HTTP ステータス コードを取得する方法を説明し、いくつかの実用的なコード例を示します。 XMLHttpRequestの使用

JavaScript で HTTP ステータス コードを簡単に取得する方法 JavaScript で HTTP ステータス コードを簡単に取得する方法 Jan 05, 2024 pm 01:37 PM

JavaScript で HTTP ステータス コードを取得する方法の紹介: フロントエンド開発では、バックエンド インターフェイスとの対話を処理する必要があることが多く、HTTP ステータス コードはその非常に重要な部分です。 HTTP ステータス コードを理解して取得すると、インターフェイスから返されたデータをより適切に処理できるようになります。この記事では、JavaScript を使用して HTTP ステータス コードを取得する方法と、具体的なコード例を紹介します。 1. HTTP ステータス コードとは何ですか? HTTP ステータス コードとは、ブラウザがサーバーへのリクエストを開始したときに、サービスが

See all articles