定期的にdatabase_pythonを変更するためのPythonサンプルコード
この記事では主にPythonでデータベースを定期的に変更するためのサンプルコードを紹介していますが、編集者が非常に良いと思ったので、参考として共有させていただきます。エディターに従って、データベースを定期的に変更する必要がある場合は、通常、データベースを変更するためのスケジュールされたプロセスを開始することを選択します。この種のスケジュールされたタスクをビジネスに書き込んでインターフェイスとして記述すると、スケジュールされたプロセスは少し不適切に見えますか?データベースを定期的に 100 回変更する必要がある場合、従来の方法では 100 個のプロセスが起動されますが、このプロセスは非常に軽量ですが、それでも不快に感じます。実際、threading.Timer を使用して、ライブラリ変更操作を実行するための対応するスレッドを作成できます。その考え方は比較的単純です。
1. データベース変更操作が実行される時刻である update_time を渡し、update_time と現在時刻の間の減算メソッドを使用して、データベース変更操作までの time_lay を取得します。 2 つの標準時刻書式文字列間の時刻の差を見つけるには、datetime.datetime.strptime() を使用して時刻を書式設定できます。書式設定された時刻を直接減算し、.秒() を実行することで結果を秒に変換できます。
2. ライブラリ変更操作を update() メソッドにカプセル化し、threading.Timer によって作成されたスレッドに更新と時刻の差を渡します。使用方法は threading.Timer(interval, function, args=[], kwargs=) です。 {}) でスレッド インスタンスを作成します。間隔は実行を遅らせる時間です。単位は秒です。その後、start() が実行されます。タイマーはノンブロッキングであり、相互に影響を与えることなく複数のスレッドを作成できます。 コードは以下の通りです#!/usr/bin/env python3 # -*- coding: utf-8 -*- from model import Table from handler.base_handler import BaseHandler from threading import Timer import datetime class TimeHandler(BaseHandler): def do_action(self): update_time = "2018-04-07 18:00:00" ads_id = "test_1" t_online = datetime.datetime.strptime(update_time, '%Y-%m-%d %H:%M:%S') now = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') t_now = datetime.datetime.strptime(now, '%Y-%m-%d %H:%M:%S') time_delay = (t_online - t_now).seconds t1 = Timer(time_delay, self.update, (ads_id, )) t1.start() self.result = "success" return def update(self, ads_id): self.db.dsp.query(Table).filter(Table.ads_id == ads_id).update({Table.is_del: 0}) self.db.dsp.commit()
update_timeをフロントエンドから渡されるパラメータに変更することで、その時点でデータベース変更操作を実行することができます。そのとき、最後の行に commit() が追加されていなかったため、データベース変更操作が有効にならないという小さな落とし穴に遭遇しました。本来、ライブラリを変更するコミットは基本クラス BaseHandler に記述されて有効になりますが、ここでの update() は Timer スレッドで実行され、非同期操作である Commit() をスレッド内で実行する必要があります。変更が有効になります。
Python でのファイルの読み取りと書き込みに関する詳細な説明
以上が定期的にdatabase_pythonを変更するためのPythonサンプルコードの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









PHPは主に手順プログラミングですが、オブジェクト指向プログラミング(OOP)もサポートしています。 Pythonは、OOP、機能、手続き上のプログラミングなど、さまざまなパラダイムをサポートしています。 PHPはWeb開発に適しており、Pythonはデータ分析や機械学習などのさまざまなアプリケーションに適しています。

PHPはWeb開発と迅速なプロトタイピングに適しており、Pythonはデータサイエンスと機械学習に適しています。 1.PHPは、単純な構文と迅速な開発に適した動的なWeb開発に使用されます。 2。Pythonには簡潔な構文があり、複数のフィールドに適しており、強力なライブラリエコシステムがあります。

VSコードはPythonの書き込みに使用でき、Pythonアプリケーションを開発するための理想的なツールになる多くの機能を提供できます。ユーザーは以下を可能にします。Python拡張機能をインストールして、コードの完了、構文の強調表示、デバッグなどの関数を取得できます。デバッガーを使用して、コードを段階的に追跡し、エラーを見つけて修正します。バージョンコントロールのためにGitを統合します。コードフォーマットツールを使用して、コードの一貫性を維持します。糸くずツールを使用して、事前に潜在的な問題を発見します。

VSコード拡張機能は、悪意のあるコードの隠れ、脆弱性の活用、合法的な拡張機能としての自慰行為など、悪意のあるリスクを引き起こします。悪意のある拡張機能を識別する方法には、パブリッシャーのチェック、コメントの読み取り、コードのチェック、およびインストールに注意してください。セキュリティ対策には、セキュリティ認識、良好な習慣、定期的な更新、ウイルス対策ソフトウェアも含まれます。

PHPは1994年に発信され、Rasmuslerdorfによって開発されました。もともとはウェブサイトの訪問者を追跡するために使用され、サーバー側のスクリプト言語に徐々に進化し、Web開発で広く使用されていました。 Pythonは、1980年代後半にGuidovan Rossumによって開発され、1991年に最初にリリースされました。コードの読みやすさとシンプルさを強調し、科学的コンピューティング、データ分析、その他の分野に適しています。

Pythonは、スムーズな学習曲線と簡潔な構文を備えた初心者により適しています。 JavaScriptは、急な学習曲線と柔軟な構文を備えたフロントエンド開発に適しています。 1。Python構文は直感的で、データサイエンスやバックエンド開発に適しています。 2。JavaScriptは柔軟で、フロントエンドおよびサーバー側のプログラミングで広く使用されています。

VSコードはMacで利用できます。強力な拡張機能、GIT統合、ターミナル、デバッガーがあり、豊富なセットアップオプションも提供しています。ただし、特に大規模なプロジェクトまたは非常に専門的な開発の場合、コードと機能的な制限がある場合があります。

はい、VSコードはPythonコードを実行できます。 VSコードでPythonを効率的に実行するには、次の手順を完了します。Pythonインタープリターをインストールし、環境変数を構成します。 VSコードにPython拡張機能をインストールします。コマンドラインを介してVSコードの端末でPythonコードを実行します。 VSコードのデバッグ機能とコードフォーマットを使用して、開発効率を向上させます。優れたプログラミング習慣を採用し、パフォーマンス分析ツールを使用してコードパフォーマンスを最適化します。
