ホームページ バックエンド開発 Python チュートリアル OpenCVメソッドを使用したPythonインターフェース

OpenCVメソッドを使用したPythonインターフェース

Apr 09, 2018 pm 02:52 PM
opencv python 方法

今回は Python インターフェースで OpenCV を使用する方法について説明します。 Python インターフェースで OpenCV を使用する場合の 注意事項 について説明します。

1. Anaconda2 で OpenCV を設定します

opencv を解凍し、システム環境変数を追加し、コンピューター --> プロパティを右クリック --> システムの詳細設定 --> 環境変数 -->

システム変数 -->パスの編集--> F:Program Files (x86)opencv-3.2.0-vc14buildx64vc14bin を追加

opencv/build/python/2.7/x64/cv2.pyd を Anaconda2/Lib/Site にコピーします-パッケージ /

注: 上記の python/2.7 からわかるように、opencv の公式 Python インターフェイスは Anaconda2 バージョンのみをサポートします。Anaconda3 をインストールする場合は、cmd を開いて conda install -c https://conda を実行できます。 .anaconda .org/menpo opencv3;

Anaconda3 の設定については、この記事も参照してください

ipython を開いてテストしてください

import cv2
print(cv2.version)
ログイン後にコピー

2. OpenCV の基本

1.画像

import cv2
import matplotlib.pyplot as plt
# 读取图像,第二个参数可以为1(默认读入彩图, 可省略), 0(以灰度图读入)
im = cv2.imread('empire.jpg', 1) # 函数imread()返回图像为一个标准的 NumPy 数组
h,w = im.shape[:2]
print h,w
# 显示图像,第一个参数是窗口的名字,其次才是我们的图像,窗口会自动调整为图像大小。
cv2.imshow('image', img)
cv2.waitKey(0) # 为防止图像一闪而过,无限期的等待键盘输入
cv2.destroyAllWindows() # 关闭所有图像
# 保存图像(必须设置保存图像的路径和扩展名)
cv2.imwrite('result.png', im)
# 使用 plt 显示图像(可显示像素坐标及像素值)、保存图像
plt.imshow(im, cmap='gray', interpolation='bicubic')
plt.show()
plt.savefig('figpath.png', bbox_inches='tight')
ログイン後にコピー

2. 色空間変換

OpenCV では、画像は従来の RGB カラー チャネルではなく、BGR 順序 (つまり、RGB の逆順序) で保存されます。画像読み込み時のデフォルトはBGRですが、いくつかの変換関数が利用可能です。色空間の変換は、関数 cvtColor() を使用して実現できます。

# 1.使用opencv读取并创建灰度图像,按 BGR 顺序
im = cv2.imread('empire.jpg')
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
# 2.使用matplotlib.image 读入并创建灰度图像,按 RGB 顺序
import matplotlib.image as mpl_img
im = mpl_img.imread('empire.jpg')
gray = cv2.cvtColor(im, cv2.COLOR_RGB2GRAY)
# Note: 注意1和2的区别在颜色转换代码
# 常用:cv2.COLOR_BGR2RGB、cv2.COLOR_GRAY2BGR、cv2.COLOR_BGR2HSV
ログイン後にコピー

3. 画像上に直線、長方形、円、多角形(曲線)を描画します

直線を描画します: cv2.line()

import cv2
# 读取图像,按 BGR 顺序
img = cv2.imread('empire.jpg')
# 传入图像、起点坐标、终点坐标、线的颜色(color)、线的厚度(thickness)
# color : Color of the shape. for BGR, pass it as a tuple, eg: (255,0,0) for blue. For grayscale, just pass the scalar value.
# thickness : if -1 is passed for closed figures like circles, it will fill the shape, default thickness = 1.
img = cv2.line(img, (0, 0), (511, 511), (255, 0, 0), 5)
ログイン後にコピー
長方形を描画します: cv2.rectangle()

# 需要传入图像、左上角顶点坐标、右下角顶点坐标、颜色、线宽
img = cv2.rectangle(img, (384, 0), (510, 128), (0, 255, 0), 3)
ログイン後にコピー
円を描画します: cv2.circle()

# 需要传入图像、圆的中心点坐标、半径、颜色、线宽
img = cv2.circle(img, (447, 63), 63, (0, 0, 255), -1)
# If -1 is passed for closed figures like circles, it will fill the shape. default thickness = 1
ログイン後にコピー
多角形(曲線含む)を描画: cv2.polylines()

# 数组的数据类型必须为int32,若知道曲线方程,可以生成一堆点,就可以画出曲线来啦
pts = np.array([[10,5],[20,30],[70,20],[50,10]], np.int32)
# 第一个参数为-1, 表明这一维的长度(点的数量)是根据后面的维度的计算出来的
pts = pts.reshape((-1,1,2))
# 如果第三个参数是False,我们得到的多边形是不闭合的(首尾不相连)
img = cv2.polylines(img, [pts], True, (0, 255, 255))
ログイン後にコピー
画像にテキストを追加: cv2.putText()

font = cv2.FONT_HERSHEY_SIMPLEX
# 第 3~6 个参数为:bottom-left corner where data starts、font size、color、thickness
cv2.putText(img,'OpenCV',(10,500), font, 4, (255, 255, 255), 2, cv2.LINE_AA)
ログイン後にコピー

4. 画像の基本操作ピクセル値を変更します

import cv2
import numpy as np
img = cv2.imread('messi5.jpg')
px = img[100, 100]
print px
[57 63 68]
# accessing only blue pixel
blue = img[100, 100, 0]
print blue
57 
# modify the pixel
img[100, 100] = [255, 255, 255]
print img[100, 100]
[255 255 255]
# channel 2 所有值置为0 
img[:, :, 2] = 0
ログイン後にコピー

画像属性を取得します

img = cv2.imread('messi5.jpg')
print img.shape
(960L, 1280L, 3L)
print img.size
3686400
print img.dtype
uint8
ログイン後にコピー

画像ブロックを選択します

img = cv2.imread('messi5.jpg')
# select the ball and copy it to another region
ball = img[280:340, 330:390] # 注意:340和390取不到
img[273:333, 100:160] = ball
ログイン後にコピー

この記事の事例を読んだ後は、この方法を習得したと思います。さらに興味深い情報については、PHP 中国語に関する他の関連記事に注目してください。 Webサイト!

推奨読書:

Python opencv はターゲットカラーを検出して抽出します


Python はデータフレーム内のデータをデータベースにどのように書き込むのか

以上がOpenCVメソッドを使用したPythonインターフェースの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

PHPおよびPython:コードの例と比較 PHPおよびPython:コードの例と比較 Apr 15, 2025 am 12:07 AM

PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

CentosのPytorchのGPUサポートはどのようにサポートされていますか CentosのPytorchのGPUサポートはどのようにサポートされていますか Apr 14, 2025 pm 06:48 PM

Pytorch GPUアクセラレーションを有効にすることで、CentOSシステムでは、PytorchのCUDA、CUDNN、およびGPUバージョンのインストールが必要です。次の手順では、プロセスをガイドします。CUDAおよびCUDNNのインストールでは、CUDAバージョンの互換性が決定されます。NVIDIA-SMIコマンドを使用して、NVIDIAグラフィックスカードでサポートされているCUDAバージョンを表示します。たとえば、MX450グラフィックカードはCUDA11.1以上をサポートする場合があります。 cudatoolkitのダウンロードとインストール:nvidiacudatoolkitの公式Webサイトにアクセスし、グラフィックカードでサポートされている最高のCUDAバージョンに従って、対応するバージョンをダウンロードしてインストールします。 cudnnライブラリをインストールする:

Python vs. JavaScript:コミュニティ、ライブラリ、リソース Python vs. JavaScript:コミュニティ、ライブラリ、リソース Apr 15, 2025 am 12:16 AM

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

Dockerの原則の詳細な説明 Dockerの原則の詳細な説明 Apr 14, 2025 pm 11:57 PM

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

ミニオペンCentosの互換性 ミニオペンCentosの互換性 Apr 14, 2025 pm 05:45 PM

MINIOオブジェクトストレージ:CENTOSシステムの下での高性能展開Minioは、Amazons3と互換性のあるGO言語に基づいて開発された高性能の分散オブジェクトストレージシステムです。 Java、Python、JavaScript、Goなど、さまざまなクライアント言語をサポートしています。この記事では、CentosシステムへのMinioのインストールと互換性を簡単に紹介します。 Centosバージョンの互換性Minioは、Centos7.9を含むがこれらに限定されない複数のCentosバージョンで検証されています。

CentosでPytorchの分散トレーニングを操作する方法 CentosでPytorchの分散トレーニングを操作する方法 Apr 14, 2025 pm 06:36 PM

Pytorchの分散トレーニングでは、Centosシステムでトレーニングには次の手順が必要です。Pytorchのインストール:PythonとPipがCentosシステムにインストールされていることです。 CUDAバージョンに応じて、Pytorchの公式Webサイトから適切なインストールコマンドを入手してください。 CPUのみのトレーニングには、次のコマンドを使用できます。PipinstalltorchtorchtorchvisionTorchaudioGPUサポートが必要な場合は、CUDAとCUDNNの対応するバージョンがインストールされ、インストールに対応するPytorchバージョンを使用してください。分散環境構成:分散トレーニングには、通常、複数のマシンまたは単一マシンの複数GPUが必要です。場所

CentosでPytorchバージョンを選択する方法 CentosでPytorchバージョンを選択する方法 Apr 14, 2025 pm 06:51 PM

PytorchをCentosシステムにインストールする場合、適切なバージョンを慎重に選択し、次の重要な要因を検討する必要があります。1。システム環境互換性:オペレーティングシステム:Centos7以上を使用することをお勧めします。 Cuda and Cudnn:PytorchバージョンとCudaバージョンは密接に関連しています。たとえば、pytorch1.9.0にはcuda11.1が必要ですが、pytorch2.0.1にはcuda11.3が必要です。 CUDNNバージョンは、CUDAバージョンとも一致する必要があります。 Pytorchバージョンを選択する前に、互換性のあるCUDAおよびCUDNNバージョンがインストールされていることを確認してください。 Pythonバージョン:Pytorch公式支店

PytorchをCentosの最新バージョンに更新する方法 PytorchをCentosの最新バージョンに更新する方法 Apr 14, 2025 pm 06:15 PM

PytorchをCentosの最新バージョンに更新すると、次の手順に従うことができます。方法1:PIPでPIPを更新する:最初にPIPが最新バージョンであることを確認します。これは、PIPの古いバージョンがPytorchの最新バージョンを適切にインストールできない可能性があるためです。 pipinstall- upgradepipアンインストール古いバージョンのpytorch(インストールの場合):pipuninstorchtorchtorchvisiontorchaudioインストール最新

See all articles