ホームページ バックエンド開発 Python チュートリアル numpyで配列要素に均一な値を割り当てる方法

numpyで配列要素に均一な値を割り当てる方法

Apr 09, 2018 pm 03:59 PM
numpy 要素 団結する

今回は、numpy で配列要素に均一な値を割り当てる方法と、numpy で配列要素に均一な値を割り当てるための 注意事項 を​​説明します。 以下に実際のケースを示します。

Numpy での配列代入操作全体はいつも少し混乱しており、深く理解できないことがよくあります。今日は関連する知識ポイントを個別にリストアップしてまとめます。

まず、コード スニペットの 2 つの小さな例を見てみましょう:

例 1:

In [2]: arr =np.empty((8,4))
In [3]: arr
Out[3]:
array([[ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.]])
In [4]: arr[1] = 1
In [5]: arr
Out[5]:
array([[ 0., 0., 0., 0.],
    [ 1., 1., 1., 1.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.]])
ログイン後にコピー

例 2:

In [6]: arr1 =np.empty(2)
In [8]: arr1
Out[8]:array([ 7.74860419e-304,  7.74860419e-304])
In [9]: arr1 = 0
In [10]: arr1
Out[10]: 0
ログイン後にコピー
これら 2 つの段落には矛盾があるようです。テント

行動実際、一般的な オブジェクト指向 タグ理解モデルを使用しても理解できます。

例 1 では、

index を追加した後のラベルは実際に特定のストレージ領域を参照していますが、例 2 ではラベルが直接使用されています。では、1 次元配列 の全体的な割り当てを実装するにはどうすればよいでしょうか?実際には、すべての要素にインデックスを付けるだけで済みます。具体的な方法は次のとおりです。

In [11]: arr1 =np.empty(2)
In [12]: arr1
Out[12]: array([0., 0.])
In [13]: arr1[:]
Out[13]: array([0., 0.])
In [14]: arr1[:] =0
In [15]: arr1
Out[15]: array([0., 0.])
ログイン後にコピー

非常に簡単そうに見えますが、少し詳しく分析しないと、確かに理解するのが少し難しいです。 この記事の事例を読んだ後は、この方法を習得したと思います。さらに興味深い情報については、php 中国語 Web サイトの他の関連記事に注目してください。

推奨書籍:

Python Numpy が配列と行列を操作する方法

Python の Numpy 配列をマージする方法

以上がnumpyで配列要素に均一な値を割り当てる方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

NumPy を PyCharm にインストールし、その機能を最大限に活用する方法に関するステップバイステップのガイド NumPy を PyCharm にインストールし、その機能を最大限に活用する方法に関するステップバイステップのガイド Feb 18, 2024 pm 06:38 PM

NumPy を PyCharm にインストールし、その強力な機能を最大限に活用する方法をステップバイステップで説明します。はじめに: NumPy は、Python の科学計算用の基本ライブラリの 1 つであり、高性能の多次元配列オブジェクトと実行に必要なさまざまな関数を提供します。配列に対する基本的な操作。関数。これは、ほとんどのデータ サイエンスおよび機械学習プロジェクトの重要な部分です。この記事では、NumPy を PyCharm にインストールする方法を紹介し、具体的なコード例を通じてその強力な機能を示します。ステップ 1: PyCharm をインストールする まず、

numpy バ​​ージョンのアップグレード: 詳細でわかりやすいガイド numpy バ​​ージョンのアップグレード: 詳細でわかりやすいガイド Feb 25, 2024 pm 11:39 PM

numpy バ​​ージョンをアップグレードする方法: わかりやすいチュートリアル、具体的なコード例が必要 はじめに: NumPy は科学技術計算に使用される重要な Python ライブラリです。これは、強力な多次元配列オブジェクトと、効率的な数値演算を実行するために使用できる一連の関連関数を提供します。新しいバージョンがリリースされると、新しい機能やバグ修正が常に提供されます。この記事では、インストールされている NumPy ライブラリをアップグレードして最新の機能を入手し、既知の問題を解決する方法について説明します。ステップ 1: 最初に現在の NumPy バージョンを確認する

Numpy バ​​ージョン選択ガイド: なぜアップグレードするのですか? Numpy バ​​ージョン選択ガイド: なぜアップグレードするのですか? Jan 19, 2024 am 09:34 AM

データ サイエンス、機械学習、深層学習などの分野の急速な発展に伴い、Python はデータ分析とモデリングの主流の言語になりました。 Python では、NumPy (NumericalPython の略) は、効率的な多次元配列オブジェクトのセットを提供し、pandas、SciPy、scikit-learn などの他の多くのライブラリの基礎となるため、非常に重要なライブラリです。 NumPy を使用する過程で、異なるバージョン間の互換性の問題が発生する可能性があります。

Numpy インストールガイド: インストールの問題を 1 つの記事で解決する Numpy インストールガイド: インストールの問題を 1 つの記事で解決する Feb 21, 2024 pm 08:15 PM

Numpy インストール ガイド: インストールの問題を解決するための 1 つの記事 (具体的なコード例が必要) はじめに: Numpy は Python の強力な科学計算ライブラリであり、配列データを操作するための効率的な多次元配列オブジェクトとツールを提供します。ただし、初心者にとって、Numpy のインストールは混乱を招く可能性があります。この記事では、インストールの問題を迅速に解決するのに役立つ Numpy インストール ガイドを提供します。 1. Python 環境をインストールします。Numpy をインストールする前に、まず Py がインストールされていることを確認する必要があります。

NumPy ライブラリを素早くアンインストールする秘密の方法を明らかにする NumPy ライブラリを素早くアンインストールする秘密の方法を明らかにする Jan 26, 2024 am 08:32 AM

NumPy ライブラリを素早くアンインストールする方法の秘密が明らかになります。具体的なコード例が必要です。NumPy は、データ分析、科学計算、機械学習などの分野で広く使用されている強力な Python 科学計算ライブラリです。ただし、バージョンを更新するため、またはその他の理由で、NumPy ライブラリのアンインストールが必要になる場合があります。この記事では、NumPy ライブラリをすばやくアンインストールする方法をいくつか紹介し、具体的なコード例を示します。方法 1: pip を使用してアンインストールする pip は、インストール、アップグレード、およびアンインストールに使用できる Python パッケージ管理ツールです。

ヌルヌル斬り操作の徹底分析と実戦への応用 ヌルヌル斬り操作の徹底分析と実戦への応用 Jan 26, 2024 am 08:52 AM

numpy のスライス演算方法の詳細な説明と実践的な応用ガイド はじめに: Numpy は Python で最も人気のある科学計算ライブラリの 1 つであり、強力な配列演算関数を提供します。中でもスライス操作はnumpyでよく使われる強力な機能の一つです。この記事では、numpy でのスライス操作の方法を詳しく紹介し、実践的なアプリケーション ガイドを通じてスライス操作の具体的な使用方法を示します。 1. numpy スライス演算方法の紹介 Numpy スライス演算とは、インデックス間隔を指定して配列の部分集合を取得することを指します。その基本的な形式は次のとおりです。

Tensor と Numpy 間の変換: 例と応用 Tensor と Numpy 間の変換: 例と応用 Jan 26, 2024 am 11:03 AM

Tensor と Numpy 変換の例と応用 TensorFlow は非常に人気のある深層学習フレームワークであり、Numpy は Python 科学技術コンピューティングのコア ライブラリです。 TensorFlow と Numpy はどちらも多次元配列を使用してデータを操作するため、実際のアプリケーションでは、多くの場合、この 2 つの間で変換を行う必要があります。この記事では、具体的なコード例を通して TensorFlow と Numpy 間の変換方法を紹介し、実際のアプリケーションでの使用方法を説明します。頭

競合やエラーを回避するために NumPy ライブラリをアンインストールするためのガイド 競合やエラーを回避するために NumPy ライブラリをアンインストールするためのガイド Jan 26, 2024 am 10:22 AM

NumPy ライブラリは、科学計算とデータ分析のための Python の重要なライブラリの 1 つです。ただし、場合によっては、バージョンをアップグレードしたり、他のライブラリとの競合を解決したりする必要があるため、NumPy ライブラリをアンインストールする必要がある場合があります。この記事では、競合やエラーの可能性を回避するために NumPy ライブラリを正しくアンインストールする方法を読者に紹介し、特定のコード例を通じて操作プロセスを示します。 pip は Python のパッケージ管理ツールであるため、NumPy ライブラリのアンインストールを開始する前に、pip ツールがインストールされていることを確認する必要があります。

See all articles