Numpy での配列の再形成、結合、分割方法に関する詳細な説明
次の記事では、Numpy での配列の再形成、結合、分割の方法について詳しく説明します。これは非常に参考になるので、皆さんのお役に立てれば幸いです。一緒に見てみましょう
1. 配列の再形成
1.1 1 次元配列を 2 次元配列に変換します
これは、データを前提として、 reshape() 関数によって実現できます。型は numpy.array です。1 次元配列 array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) は、2 行 5 列の 2 次元配列に変換されます。コードは次のとおりです:
data.reshape((2,5))
パラメータとしての形状の次元の 1 つは -1 にすることができます。これは、この次元のサイズがデータ自体から推測されることを意味するため、上記のコードは同等です。 to:
data.reshape((2,-1))
1.2 2 次元配列を次元配列に変換する
多次元配列を 1 次元配列に変換する操作は、フラット化またはラベリングと呼ばれることがよくあります。は 2 つの機能から選択できます。実行コードは以下の通りです:
data.ravel() # 不会产生源数据的副本 data.flatten() # 总是返回数据的副本
この2点の違いがよくわかりません。何か言いたいことを知っている人がいたら、コメントや交換を歓迎します。
2. 配列の結合と分割
2.1 配列の結合
ここでは、最も一般的に使用されるメソッドである concatenate メソッドのみを紹介します。arr1 = np.array([[1,2,3], [4,5,6]]) arr2 = np.array([[7,8,9], [10,11,12]]) data = np.concatenate([arr1, arr2], axis=0) # axis参数指明合并的轴向,0表示按行,1表示按列
2.2 配列の分割
ここではsplit関数のみ紹介します
np.split(data, [1], axis=0)#dataは分割された配列、[ 1 ] は分割する行番号または列番号、軸は列または行による分割を示します (デフォルトは 0、つまり行ごとの分割) 関連推奨事項:numpy array_python のいくつかのソート方法についての簡単な説明
以上がNumpy での配列の再形成、結合、分割方法に関する詳細な説明の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









numpy バージョンを更新する方法: 1. 「pip install --upgrade numpy」コマンドを使用します。 2. Python 3.x バージョンを使用している場合は、「pip3 install --upgrade numpy」コマンドを使用します。現在の NumPy バージョンを上書きしてインストールします; 3. conda を使用して Python 環境を管理している場合は、「conda install --update numpy」コマンドを使用して更新します。

Numpy は Python の重要な数学ライブラリであり、効率的な配列演算と科学技術計算機能を提供し、データ分析、機械学習、深層学習などの分野で広く使用されています。 numpy を使用する場合、多くの場合、現在の環境でサポートされている機能を確認するために numpy のバージョン番号を確認する必要があります。この記事では、numpyのバージョンを簡単に確認する方法と具体的なコード例を紹介します。方法 1: numpy に付属の __version__ 属性を使用する numpy モジュールには __ が付属しています

最新バージョンの NumPy1.21.2 を使用することをお勧めします。その理由は次のとおりです。現在、NumPy の最新の安定バージョンは 1.21.2 です。一般に、NumPy の最新バージョンを使用することをお勧めします。これには、最新の機能とパフォーマンスの最適化が含まれており、以前のバージョンのいくつかの問題とバグが修正されています。

NumPy を PyCharm にインストールし、その強力な機能を最大限に活用する方法をステップバイステップで説明します。はじめに: NumPy は、Python の科学計算用の基本ライブラリの 1 つであり、高性能の多次元配列オブジェクトと実行に必要なさまざまな関数を提供します。配列に対する基本的な操作。関数。これは、ほとんどのデータ サイエンスおよび機械学習プロジェクトの重要な部分です。この記事では、NumPy を PyCharm にインストールする方法を紹介し、具体的なコード例を通じてその強力な機能を示します。ステップ 1: PyCharm をインストールする まず、

numpy バージョンをアップグレードする方法: わかりやすいチュートリアル、具体的なコード例が必要 はじめに: NumPy は科学技術計算に使用される重要な Python ライブラリです。これは、強力な多次元配列オブジェクトと、効率的な数値演算を実行するために使用できる一連の関連関数を提供します。新しいバージョンがリリースされると、新しい機能やバグ修正が常に提供されます。この記事では、インストールされている NumPy ライブラリをアップグレードして最新の機能を入手し、既知の問題を解決する方法について説明します。ステップ 1: 最初に現在の NumPy バージョンを確認する

numpy でディメンションを追加する方法: 1. ディメンションを追加するには、「np.newaxis」を使用します。「np.newaxis」は、指定された位置に新しいディメンションを挿入するために使用される特別なインデックス値です。対応する位置で np.newaxis を使用できます。 . 次元を増やすには; 2.「np.expand_dims()」を使って次元を増やす 「np.expand_dims()」関数は、指定した位置に新しい次元を挿入して配列の次元を増やすことができます。

データ サイエンス、機械学習、深層学習などの分野の急速な発展に伴い、Python はデータ分析とモデリングの主流の言語になりました。 Python では、NumPy (NumericalPython の略) は、効率的な多次元配列オブジェクトのセットを提供し、pandas、SciPy、scikit-learn などの他の多くのライブラリの基礎となるため、非常に重要なライブラリです。 NumPy を使用する過程で、異なるバージョン間の互換性の問題が発生する可能性があります。

Numpy は、pip、conda、ソースコード、Anaconda を使用してインストールできます。詳細な紹介: 1. pip、コマンド ラインに pip install numpy と入力します; 2. conda、コマンド ラインに conda install numpy と入力します; 3. ソース コード、ソース コード パッケージを解凍するか、ソース コード ディレクトリに入力します、コマンドに入力します行 python setup.py ビルド python setup.py インストール。
