Pythonデジタル画像処理の高度な形態学的処理
この記事では主にPythonデジタル画像処理の高度な形態学的処理を紹介し、参考として提供します。一緒に見てみましょう
形態学的処理には、最も基本的な拡張、腐食、開閉操作、ブラック/ホワイトハット処理に加えて、凸包、接続領域のマーキング、削除などのより高度なアプリケーションもあります。小さなブロック領域など
1. 凸包
凸包とは、画像内のすべての白いピクセルを含む凸多角形を指します。
関数は次のとおりです:
skimage.morphology.convex_hull_image(image)
入力はバイナリ イメージで、出力は論理バイナリ イメージです。凸包内の点は True、それ以外の場合は False です
例:
import matplotlib.pyplot as plt from skimage import data,color,morphology #生成二值测试图像 img=color.rgb2gray(data.horse()) img=(img<0.5)*1 chull = morphology.convex_hull_image(img) #绘制轮廓 fig, axes = plt.subplots(1,2,figsize=(8,8)) ax0, ax1= axes.ravel() ax0.imshow(img,plt.cm.gray) ax0.set_title('original image') ax1.imshow(chull,plt.cm.gray) ax1.set_title('convex_hull image')
convex_hull_image() は画像内のすべてのターゲットを全体として扱うため、最小の凸多角形が 1 つだけ計算されます。画像内に複数のターゲット オブジェクトがあり、各オブジェクトが最小の凸多角形を計算する必要がある場合は、convex_hull_object() 関数を使用する必要があります。
関数形式: skimage.morphology.convex_hull_object(image,neighbors=8)
入力パラメータ画像はバイナリ画像であり、近傍は4-connectedを使用するか、またはを使用するかを示します8 接続 デフォルトは 8 接続です。
例:
import matplotlib.pyplot as plt from skimage import data,color,morphology,feature #生成二值测试图像 img=color.rgb2gray(data.coins()) #检测canny边缘,得到二值图片 edgs=feature.canny(img, sigma=3, low_threshold=10, high_threshold=50) chull = morphology.convex_hull_object(edgs) #绘制轮廓 fig, axes = plt.subplots(1,2,figsize=(8,8)) ax0, ax1= axes.ravel() ax0.imshow(edgs,plt.cm.gray) ax0.set_title('many objects') ax1.imshow(chull,plt.cm.gray) ax1.set_title('convex_hull image') plt.show()
2. 連結領域マーク
2値画像において、2つのピクセルが隣接しており、同じ値(両方とも0または1)を持っている場合、これら 2 つのピクセルは接続された領域にあります。同じ接続領域内のすべてのピクセルは同じ値でマークされます。このプロセスは接続領域マーキングと呼ばれます。 2 つのピクセルが隣接しているかどうかを判断する場合、通常は 4 連結または 8 連結の判断が使用されます。画像の最小単位はピクセルであり、各ピクセルは隣接する 8 つのピクセルで囲まれます。一般的な隣接関係には、4 隣接と 8 隣接の 2 つがあります。 4は、下図左のように上下左右の計4点に隣接しています。 8 隣接する点は、下図右のように対角位置の点も含めて合計 8 点あります。
skimage パッケージでは、measure サブモジュールの下で label() 関数を使用して、接続領域のラベル付けを実装します。
関数の形式:
skimage.measure.label(image,connectivity=None)
パラメーター内のイメージは処理する必要があるバイナリ イメージを表し、接続性は接続モードを表します。1 は 4 つの隣接関係を表し、2 は 8 つの隣接関係を表します。
0から始まるラベル(ラベル)の配列を出力します。
import numpy as np import scipy.ndimage as ndi from skimage import measure,color import matplotlib.pyplot as plt #编写一个函数来生成原始二值图像 def microstructure(l=256): n = 5 x, y = np.ogrid[0:l, 0:l] #生成网络 mask = np.zeros((l, l)) generator = np.random.RandomState(1) #随机数种子 points = l * generator.rand(2, n**2) mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1 mask = ndi.gaussian_filter(mask, sigma=l/(4.*n)) #高斯滤波 return mask > mask.mean() data = microstructure(l=128)*1 #生成测试图片 labels=measure.label(data,connectivity=2) #8连通区域标记 dst=color.label2rgb(labels) #根据不同的标记显示不同的颜色 print('regions number:',labels.max()+1) #显示连通区域块数(从0开始标记) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4)) ax1.imshow(data, plt.cm.gray, interpolation='nearest') ax1.axis('off') ax2.imshow(dst,interpolation='nearest') ax2.axis('off') fig.tight_layout() plt.show()
コードでは、所々に 1 を掛けることで bool 配列を int 配列に素早く変換できます。
結果は図に示すとおりです: 0-9 のマークが付いた 10 個の接続領域があります
面積、外接長方形、凸包領域などの計算など、各接続領域を個別に操作したい場合.、measureサブモジュールのregionprops()関数を呼び出す必要があります。この関数の形式は次のとおりです:
skimage.measure.regionprops(label_image)
接続されているすべてのブロックの属性リストを返します。一般的に使用される属性リストは次のとおりです。
area
bbox | tuple | |
centroid | array | |
convex_area | int | |
convex_image | ndarray | |
座標 | ndarray | |
離心率 | float | |
equivalent_diameter | float | |
euler _number | int | |
範囲 | float | |
filled_area | int | |
perimeter | float | |
label | int | |
3、删除小块区域 有些时候,我们只需要一些大块区域,那些零散的、小块的区域,我们就需要删除掉,则可以使用morphology子模块的remove_small_objects()函数。 函数格式:skimage.morphology.remove_small_objects(ar,min_size=64,connectivity=1,in_place=False) 参数: ar: 待操作的bool型数组。 min_size: 最小连通区域尺寸,小于该尺寸的都将被删除。默认为64. connectivity: 邻接模式,1表示4邻接,2表示8邻接 in_place: bool型值,如果为True,表示直接在输入图像中删除小块区域,否则进行复制后再删除。默认为False. 返回删除了小块区域的二值图像。 import numpy as np import scipy.ndimage as ndi from skimage import morphology import matplotlib.pyplot as plt #编写一个函数来生成原始二值图像 def microstructure(l=256): n = 5 x, y = np.ogrid[0:l, 0:l] #生成网络 mask = np.zeros((l, l)) generator = np.random.RandomState(1) #随机数种子 points = l * generator.rand(2, n**2) mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1 mask = ndi.gaussian_filter(mask, sigma=l/(4.*n)) #高斯滤波 return mask > mask.mean() data = microstructure(l=128) #生成测试图片 dst=morphology.remove_small_objects(data,min_size=300,connectivity=1) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4)) ax1.imshow(data, plt.cm.gray, interpolation='nearest') ax2.imshow(dst,plt.cm.gray,interpolation='nearest') fig.tight_layout() plt.show() ログイン後にコピー 在此例中,我们将面积小于300的小块区域删除(由1变为0),结果如下图: 4、综合示例:阈值分割+闭运算+连通区域标记+删除小区块+分色显示 import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as mpatches from skimage import data,filter,segmentation,measure,morphology,color #加载并裁剪硬币图片 image = data.coins()[50:-50, 50:-50] thresh =filter.threshold_otsu(image) #阈值分割 bw =morphology.closing(image > thresh, morphology.square(3)) #闭运算 cleared = bw.copy() #复制 segmentation.clear_border(cleared) #清除与边界相连的目标物 label_image =measure.label(cleared) #连通区域标记 borders = np.logical_xor(bw, cleared) #异或 label_image[borders] = -1 image_label_overlay =color.label2rgb(label_image, image=image) #不同标记用不同颜色显示 fig,(ax0,ax1)= plt.subplots(1,2, figsize=(8, 6)) ax0.imshow(cleared,plt.cm.gray) ax1.imshow(image_label_overlay) for region in measure.regionprops(label_image): #循环得到每一个连通区域属性集 #忽略小区域 if region.area < 100: continue #绘制外包矩形 minr, minc, maxr, maxc = region.bbox rect = mpatches.Rectangle((minc, minr), maxc - minc, maxr - minr, fill=False, edgecolor='red', linewidth=2) ax1.add_patch(rect) fig.tight_layout() plt.show() ログイン後にコピー 以上がPythonデジタル画像処理の高度な形態学的処理の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。 このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
![]() ホットAIツール![]() Undresser.AI Undressリアルなヌード写真を作成する AI 搭載アプリ ![]() AI Clothes Remover写真から衣服を削除するオンライン AI ツール。 ![]() Undress AI Tool脱衣画像を無料で ![]() Clothoff.ioAI衣類リムーバー ![]() AI Hentai GeneratorAIヘンタイを無料で生成します。 ![]() 人気の記事
R.E.P.O.説明されたエネルギー結晶と彼らが何をするか(黄色のクリスタル)
1 か月前
By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最高のグラフィック設定
1 か月前
By 尊渡假赌尊渡假赌尊渡假赌
アサシンのクリードシャドウズ:シーシェルリドルソリューション
3週間前
By DDD
Windows11 KB5054979の新しいものと更新の問題を修正する方法
2週間前
By DDD
Will R.E.P.O.クロスプレイがありますか?
1 か月前
By 尊渡假赌尊渡假赌尊渡假赌
![]() ホットツール![]() メモ帳++7.3.1使いやすく無料のコードエディター ![]() SublimeText3 中国語版中国語版、とても使いやすい ![]() ゼンドスタジオ 13.0.1強力な PHP 統合開発環境 ![]() ドリームウィーバー CS6ビジュアル Web 開発ツール ![]() SublimeText3 Mac版神レベルのコード編集ソフト(SublimeText3) ![]() ホットトピック
Gmailメールのログイン入り口はどこですか?
![]() ![]()
CakePHP チュートリアル
![]() ![]()
Steamのアカウント名の形式は何ですか
![]() ![]()
NYTの接続はヒントと回答です
![]() ![]() ![]() PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。 ![]() Pytorch GPUアクセラレーションを有効にすることで、CentOSシステムでは、PytorchのCUDA、CUDNN、およびGPUバージョンのインストールが必要です。次の手順では、プロセスをガイドします。CUDAおよびCUDNNのインストールでは、CUDAバージョンの互換性が決定されます。NVIDIA-SMIコマンドを使用して、NVIDIAグラフィックスカードでサポートされているCUDAバージョンを表示します。たとえば、MX450グラフィックカードはCUDA11.1以上をサポートする場合があります。 cudatoolkitのダウンロードとインストール:nvidiacudatoolkitの公式Webサイトにアクセスし、グラフィックカードでサポートされている最高のCUDAバージョンに従って、対応するバージョンをダウンロードしてインストールします。 cudnnライブラリをインストールする: ![]() PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。 ![]() DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。 ![]() MINIOオブジェクトストレージ:CENTOSシステムの下での高性能展開Minioは、Amazons3と互換性のあるGO言語に基づいて開発された高性能の分散オブジェクトストレージシステムです。 Java、Python、JavaScript、Goなど、さまざまなクライアント言語をサポートしています。この記事では、CentosシステムへのMinioのインストールと互換性を簡単に紹介します。 Centosバージョンの互換性Minioは、Centos7.9を含むがこれらに限定されない複数のCentosバージョンで検証されています。 ![]() Pytorchの分散トレーニングでは、Centosシステムでトレーニングには次の手順が必要です。Pytorchのインストール:PythonとPipがCentosシステムにインストールされていることです。 CUDAバージョンに応じて、Pytorchの公式Webサイトから適切なインストールコマンドを入手してください。 CPUのみのトレーニングには、次のコマンドを使用できます。PipinstalltorchtorchtorchvisionTorchaudioGPUサポートが必要な場合は、CUDAとCUDNNの対応するバージョンがインストールされ、インストールに対応するPytorchバージョンを使用してください。分散環境構成:分散トレーニングには、通常、複数のマシンまたは単一マシンの複数GPUが必要です。場所 ![]() PytorchをCentosシステムにインストールする場合、適切なバージョンを慎重に選択し、次の重要な要因を検討する必要があります。1。システム環境互換性:オペレーティングシステム:Centos7以上を使用することをお勧めします。 Cuda and Cudnn:PytorchバージョンとCudaバージョンは密接に関連しています。たとえば、pytorch1.9.0にはcuda11.1が必要ですが、pytorch2.0.1にはcuda11.3が必要です。 CUDNNバージョンは、CUDAバージョンとも一致する必要があります。 Pytorchバージョンを選択する前に、互換性のあるCUDAおよびCUDNNバージョンがインストールされていることを確認してください。 Pythonバージョン:Pytorch公式支店 ![]() NGINXのインストールをインストールするには、次の手順に従う必要があります。開発ツール、PCRE-Devel、OpenSSL-Develなどの依存関係のインストール。 nginxソースコードパッケージをダウンロードし、それを解凍してコンパイルしてインストールし、/usr/local/nginxとしてインストールパスを指定します。 nginxユーザーとユーザーグループを作成し、アクセス許可を設定します。構成ファイルnginx.confを変更し、リスニングポートとドメイン名/IPアドレスを構成します。 nginxサービスを開始します。依存関係の問題、ポート競合、構成ファイルエラーなど、一般的なエラーに注意する必要があります。パフォーマンスの最適化は、キャッシュをオンにしたり、ワーカープロセスの数を調整するなど、特定の状況に応じて調整する必要があります。 ![]() |