目次
単一の Process プロセスを作成する (func を使用)
#単一の Process プロセスを作成します (クラスを使用) )
## terminate() は子プロセスを終了しますが、子プロセスのリソースは解放できません。終了してしまうため、子スレッドが不適切なタイミングで終了する可能性が高くなります。
ホームページ バックエンド開発 Python チュートリアル Pythonマルチプロセス利用例(コード)

Pythonマルチプロセス利用例(コード)

Sep 19, 2018 pm 04:41 PM
python

この記事の内容はPythonマルチプロセスの使用例(コード)に関するもので、ある程度の参考価値はありますので、困っている方は参考にしていただければ幸いです。

Python マルチスレッドは、IO 集中型のシナリオには適していますが、CPU 集中型のシナリオでは、マルチコア CPU を十分に活用できません。コルーチンは本質的にスレッドベースであり、マルチコアの利点を十分に活用できません。 。

複数のプロセスの使用を必要とするコンピューティング集約型のシナリオの場合、Python のマルチプロセッシングはスレッド モジュールに非常に似ており、プロセス プールを使用した子プロセスのバッチ作成をサポートします。

  • 単一の Process プロセスを作成する (func を使用)

Process クラスをインスタンス化し、関数をターゲット パラメーターに渡すだけです。これはスレッド モジュールと同じです。非常に似ています。args は関数のパラメータです。

import os
from multiprocessing import Process

# 子进程要执行的代码
def task(name):
    print('run child process %s (%s)...' % (name, os.getpid()))

if __name__ == '__main__':
    print('parent process %s.' % os.getpid())
    p = Process(target=task, args=('test',))
    p.start()
    p.join()
    print('process end.')
ログイン後にコピー

  • #単一の Process プロセスを作成します (クラスを使用) )

Process クラスを継承し、run メソッドをオーバーライドしてプロセスを作成します。これは基本的にスレッド モジュールと同じです

#

import multiprocessing
import os
from multiprocessing import current_process
class Worker(multiprocessing.Process):
    def run(self):
        name = current_process().name  # 获取当前进程的名称
        print(&#39;run child process <%s>  (%s)&#39; % (name, os.getpid()))

        print(&#39;In %s&#39; % self.name)
        return

if __name__ == &#39;__main__&#39;:
    print(&#39;parent process %s.&#39; % os.getpid())
    p = Worker()
    p.start()
    p.join()
    print(&#39;process end.&#39;)
ログイン後にコピー

* プロセスを停止する

## terminate() は子プロセスを終了しますが、子プロセスのリソースは解放できません。終了してしまうため、子スレッドが不適切なタイミングで終了する可能性が高くなります。

import multiprocessing
import time

def worker():
    print(&#39;starting worker&#39;)
    time.sleep(0.1)
    print(&#39;finished worker&#39;)

if __name__ == &#39;__main__&#39;:
    p = multiprocessing.Process(target=worker)
    print(&#39;执行前:&#39;, p.is_alive())
    p.start()
    print(&#39;执行中:&#39;, p.is_alive())
    p.terminate()  # 发送停止号
    print(&#39;停止:&#39;, p.is_alive())
    p.join()
    print(&#39;等待完成:&#39;, p.is_alive())
ログイン後にコピー

    複数の Process プロセスを直接作成する
import multiprocessing

def worker(num):
    print(f&#39;Worker:%s %s&#39;, num)
    return

if __name__ == &#39;__main__&#39;:
    jobs = []
    for i in range(5):
        p = multiprocessing.Process(target=worker, args=(i,))
        jobs.append(p)
        p.start()
ログイン後にコピー

    プロセス プールを使用して複数のプロセスを作成する
  • システム管理に Python を使用する場合、特に複数のファイル ディレクトリを同時に操作する場合、またはリモート複数のホストと並列操作を制御すると、時間を大幅に節約できます。操作するオブジェクトの数が多くない場合は、マルチプロセッシングのProcessを直接使用することで複数のプロセスを動的に生成することができます 十数個なら大丈夫ですが、対象が数百、数千個になると手動で制限するには多すぎますプロセスの数が面倒な場合は、この時点でプロセス プールを使用することもできます。
プールは、ユーザーが呼び出せる指定された数のプロセスを提供できます。新しいリクエストがプールに送信されると、プールがいっぱいでない場合は、リクエストを実行するために新しいプロセスが作成されます。ただし、プールがプロセス数が指定された最大値に達すると、リクエストはプール内のプロセスが終了するまで待機し、その後、それを処理する新しいプロセスが作成されます。


#

import os
import random
import time
from multiprocessing import Pool
from time import ctime


def task(name):
    print(&#39;start task %s (%s)...&#39; % (name, os.getpid()))
    start = time.time()
    time.sleep(random.random() * 3)

    print(&#39;end task %s runs %0.2f seconds.&#39; % (name, (time.time() - start)))


if __name__ == &#39;__main__&#39;:
    print(&#39;parent process %s.&#39; % os.getpid())

    p = Pool()  # 初始化进程池
    for i in range(5):
        p.apply_async(task, args=(i,))  # 追加任务 apply_async 是异步非阻塞的,就是不用等待当前进程执行完毕,随时根据系统调度来进行进程切换。

    p.close()

    p.join()  # 等待所有结果执行完毕,会等待所有子进程执行完毕,调用join()之前必须先调用close()
    print(f&#39;all done at: {ctime()}&#39;)
ログイン後にコピー

#各プロセスの実行結果が気になる場合は、get メソッドを使用して結果を返すことができます。コードは次のとおりです

import os
import random
import time
from multiprocessing import Pool, current_process
from time import ctime


def task(name):
    print(&#39;start task %s (%s)...&#39; % (name, os.getpid()))
    start = time.time()
    time.sleep(random.random() * 3)
    print(&#39;end task %s runs %0.2f seconds.&#39; % (name, (time.time() - start)))

    return current_process().name + &#39;done&#39;

if __name__ == &#39;__main__&#39;:
    print(&#39;parent process %s.&#39; % os.getpid())

    result = []

    p = Pool()  # 初始化进程池
    for i in range(5):
        result.append(p.apply_async(task, args=(i,)))  # 追加任务 apply_async 是异步非阻塞的,就是不用等待当前进程执行完毕,随时根据系统调度来进行进程切换。

    p.close()

    p.join()  # 等待所有结果执行完毕

    for res in result:
        print(res.get())  # get()函数得出每个返回结果的值

    print(f&#39;all done at: {ctime()}&#39;)
ログイン後にコピー

以上がPythonマルチプロセス利用例(コード)の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

PHPおよびPython:コードの例と比較 PHPおよびPython:コードの例と比較 Apr 15, 2025 am 12:07 AM

PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

CentosのPytorchのGPUサポートはどのようにサポートされていますか CentosのPytorchのGPUサポートはどのようにサポートされていますか Apr 14, 2025 pm 06:48 PM

Pytorch GPUアクセラレーションを有効にすることで、CentOSシステムでは、PytorchのCUDA、CUDNN、およびGPUバージョンのインストールが必要です。次の手順では、プロセスをガイドします。CUDAおよびCUDNNのインストールでは、CUDAバージョンの互換性が決定されます。NVIDIA-SMIコマンドを使用して、NVIDIAグラフィックスカードでサポートされているCUDAバージョンを表示します。たとえば、MX450グラフィックカードはCUDA11.1以上をサポートする場合があります。 cudatoolkitのダウンロードとインストール:nvidiacudatoolkitの公式Webサイトにアクセスし、グラフィックカードでサポートされている最高のCUDAバージョンに従って、対応するバージョンをダウンロードしてインストールします。 cudnnライブラリをインストールする:

Python vs. JavaScript:コミュニティ、ライブラリ、リソース Python vs. JavaScript:コミュニティ、ライブラリ、リソース Apr 15, 2025 am 12:16 AM

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

Dockerの原則の詳細な説明 Dockerの原則の詳細な説明 Apr 14, 2025 pm 11:57 PM

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

ミニオペンCentosの互換性 ミニオペンCentosの互換性 Apr 14, 2025 pm 05:45 PM

MINIOオブジェクトストレージ:CENTOSシステムの下での高性能展開Minioは、Amazons3と互換性のあるGO言語に基づいて開発された高性能の分散オブジェクトストレージシステムです。 Java、Python、JavaScript、Goなど、さまざまなクライアント言語をサポートしています。この記事では、CentosシステムへのMinioのインストールと互換性を簡単に紹介します。 Centosバージョンの互換性Minioは、Centos7.9を含むがこれらに限定されない複数のCentosバージョンで検証されています。

CentosでPytorchの分散トレーニングを操作する方法 CentosでPytorchの分散トレーニングを操作する方法 Apr 14, 2025 pm 06:36 PM

Pytorchの分散トレーニングでは、Centosシステムでトレーニングには次の手順が必要です。Pytorchのインストール:PythonとPipがCentosシステムにインストールされていることです。 CUDAバージョンに応じて、Pytorchの公式Webサイトから適切なインストールコマンドを入手してください。 CPUのみのトレーニングには、次のコマンドを使用できます。PipinstalltorchtorchtorchvisionTorchaudioGPUサポートが必要な場合は、CUDAとCUDNNの対応するバージョンがインストールされ、インストールに対応するPytorchバージョンを使用してください。分散環境構成:分散トレーニングには、通常、複数のマシンまたは単一マシンの複数GPUが必要です。場所

CentosでPytorchバージョンを選択する方法 CentosでPytorchバージョンを選択する方法 Apr 14, 2025 pm 06:51 PM

PytorchをCentosシステムにインストールする場合、適切なバージョンを慎重に選択し、次の重要な要因を検討する必要があります。1。システム環境互換性:オペレーティングシステム:Centos7以上を使用することをお勧めします。 Cuda and Cudnn:PytorchバージョンとCudaバージョンは密接に関連しています。たとえば、pytorch1.9.0にはcuda11.1が必要ですが、pytorch2.0.1にはcuda11.3が必要です。 CUDNNバージョンは、CUDAバージョンとも一致する必要があります。 Pytorchバージョンを選択する前に、互換性のあるCUDAおよびCUDNNバージョンがインストールされていることを確認してください。 Pythonバージョン:Pytorch公式支店

NginxをCentosにインストールする方法 NginxをCentosにインストールする方法 Apr 14, 2025 pm 08:06 PM

NGINXのインストールをインストールするには、次の手順に従う必要があります。開発ツール、PCRE-Devel、OpenSSL-Develなどの依存関係のインストール。 nginxソースコードパッケージをダウンロードし、それを解凍してコンパイルしてインストールし、/usr/local/nginxとしてインストールパスを指定します。 nginxユーザーとユーザーグループを作成し、アクセス許可を設定します。構成ファイルnginx.confを変更し、リスニングポートとドメイン名/IPアドレスを構成します。 nginxサービスを開始します。依存関係の問題、ポート競合、構成ファイルエラーなど、一般的なエラーに注意する必要があります。パフォーマンスの最適化は、キャッシュをオンにしたり、ワーカープロセスの数を調整するなど、特定の状況に応じて調整する必要があります。

See all articles