ホームページ バックエンド開発 Python チュートリアル pandas.DataFrame に pivot() を実装して行を列に変換する方法 (コード)

pandas.DataFrame に pivot() を実装して行を列に変換する方法 (コード)

Oct 13, 2018 pm 02:34 PM

この記事の内容は、pandas.DataFrame の pivot() で行変換 (コード) を実装する方法に関するもので、一定の参考値を持っていますので、困っている友人は参考にしていただければ幸いです。

例:

次のテーブルは行間で変換する必要があります。および列:

コードは次のとおりです:

# -*- coding:utf-8 -*-
import pandas as pd
import MySQLdb
from warnings import filterwarnings
# 由于create table if not exists总会抛出warning,因此使用filterwarnings消除
filterwarnings('ignore', category = MySQLdb.Warning)
from sqlalchemy import create_engine
import sys
if sys.version_info.major<3:
  reload(sys)
  sys.setdefaultencoding("utf-8")
  # 此脚本适用于python2和python3
host,port,user,passwd,db,charset="192.168.1.193",3306,"leo","mysql","test","utf8"

def get_df():
  global host,port,user,passwd,db,charset
  conn_config={"host":host, "port":port, "user":user, "passwd":passwd, "db":db,"charset":charset}
  conn = MySQLdb.connect(**conn_config)
  result_df=pd.read_sql(&#39;select UserName,Subject,Score from TEST&#39;,conn)
  return result_df

def pivot(result_df):
  df_pivoted_init=result_df.pivot(&#39;UserName&#39;,&#39;Subject&#39;,&#39;Score&#39;)
  df_pivoted = df_pivoted_init.reset_index()  # 将行索引也作为DataFrame值的一部分,以方便存储数据库
  return df_pivoted_init,df_pivoted
  # 返回的两个DataFrame,一个是以姓名作index的,一个是以数字序列作index,前者用于unpivot,后者用于save_to_mysql

def unpivot(df_pivoted_init):
  # unpivot需要进行df_pivoted_init二维表格的行、列索引遍历,需要拼SQL因此不能使用save_to_mysql存数据,这里使用SQL和MySQLdb接口存
  insert_sql="insert into test_unpivot(UserName,Subject,Score) values "
  # 处理值为NaN的情况
  df_pivoted_init=df_pivoted_init.add(0,fill_value=0)
  for col in df_pivoted_init.columns:
    for index in df_pivoted_init.index:
      value=df_pivoted_init.at[index,col]
      if value!=0:
        insert_sql=insert_sql+"(&#39;%s&#39;,&#39;%s&#39;,%s)" %(index,col,value)+&#39;,&#39;
  insert_sql = insert_sql.strip(&#39;,&#39;)
  global host, port, user, passwd, db, charset
  conn_config = {"host": host, "port": port, "user": user, "passwd": passwd, "db": db, "charset": charset}
  conn = MySQLdb.connect(**conn_config)
  cur=conn.cursor()
  cur.execute("create table if not exists test_unpivot like TEST")
  cur.execute(insert_sql)
  conn.commit()
  conn.close()

def save_to_mysql(df_pivoted,tablename):
  global host, port, user, passwd, db, charset
  """
  只有使用sqllite时才能指定con=connection实例,其他数据库需要使用sqlalchemy生成engine,engine的定义可以添加?来设置字符集和其他属性
  """
  conn="mysql://%s:%s@%s:%d/%s?charset=%s" %(user,passwd,host,port,db,charset)
  mysql_engine = create_engine(conn)
  df_pivoted.to_sql(name=tablename, con=mysql_engine, if_exists=&#39;replace&#39;, index=False)

# 从TEST表读取源数据至DataFrame结构
result_df=get_df()
# 将源数据行转列为二维表格形式
df_pivoted_init,df_pivoted=pivot(result_df)
# 将二维表格形式的数据存到新表test中
save_to_mysql(df_pivoted,&#39;test&#39;)
# 将被行转列的数据unpivot,存入test_unpivot表中
unpivot(df_pivoted_init)
ログイン後にコピー

結果は次のとおりです:

Pandas DataFrame クラスに付属するピボット メソッドについて:

DataFrame.pivot(index=None, columns=None ,values=None):

指定されたインデックス/列値によって整理された再形成された DataFrame を返します。 ##ピボットのため、ここにはパラメータが 3 つしかありません。後続の結果は 2 次元のテーブルでなければならず、これには行と列、およびそれらに対応する値のみが必要です。また、これは 2 次元のテーブルであるため、is_pass 列は確実に失われます。アンピボットなので、最初はこの列をチェックしませんでした。

以上がpandas.DataFrame に pivot() を実装して行を列に変換する方法 (コード)の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Python vs. C:比較されたアプリケーションとユースケース Python vs. C:比較されたアプリケーションとユースケース Apr 12, 2025 am 12:01 AM

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間のPython計画:現実的なアプローチ 2時間のPython計画:現実的なアプローチ Apr 11, 2025 am 12:04 AM

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Python:ゲーム、GUIなど Python:ゲーム、GUIなど Apr 13, 2025 am 12:14 AM

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

2時間でどのくらいのPythonを学ぶことができますか? 2時間でどのくらいのPythonを学ぶことができますか? Apr 09, 2025 pm 04:33 PM

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

Python vs. C:曲線と使いやすさの学習 Python vs. C:曲線と使いやすさの学習 Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonと時間:勉強時間を最大限に活用する Pythonと時間:勉強時間を最大限に活用する Apr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Python:主要なアプリケーションの調査 Python:主要なアプリケーションの調査 Apr 10, 2025 am 09:41 AM

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

See all articles