この記事では、Python マルチスレッドのスレッド間でリソース共有と一般的に使用されるロック メカニズムについて紹介します。これには一定の参考値があります。必要な友人は参照できます。お役に立てば幸いです。
#この記事では、スレッド間のリソース共有と、マルチスレッド プログラミングで一般的に使用されるロック メカニズムについて簡単に紹介します。
マルチスレッド プログラミングでは、スレッド間のリソース共有が頻繁に行われます。一般的に使用されるリソース共有方法は次のとおりです:
コードデモ:
from threading import Thread, Lock lock = Lock() total = 0 '''如果不使用lock那么,最后得到的数字不一定为0;同时loack不支持连续多次acquire,如果这样做了的后果是死锁!''' def add(): global total global lock for i in range(1000000): lock.acquire() total += 1 lock.release() def sub(): global total global lock for i in range(1000000): lock.acquire() total -= 1 lock.release() thread1 = Thread(target=add) thread2 = Thread(target=sub) # 将Thread1和2设置为守护线程,主线程完成时,子线程也一起结束 # thread1.setDaemon(True) # thread1.setDaemon(True) # 启动线程 thread1.start() thread2.start() # 阻塞,等待线程1和2完成,如果不使用join,那么主线程完成后,子线程也会自动关闭。 thread1.join() thread2.join() total
from threading import Thread, Lock from queue import Queue def add(q): if q.not_full: q.put(1) def sub(q): if q.not_empty: recv = q.get() print(recv) q.task_done() if __name__ =='__main__': # 设置q最多接收3个任务,Queue是线程安全的,所以不需要Lock qu = Queue(3) thread1 = Thread(target=add, args=(qu,)) thread2 = Thread(target=sub, args=(qu,)) thread1.start() thread2.start() # q队列堵塞,等待所有任务都被处理完。 qu.join()
from threading import Thread, Lock lock = Lock() total = 0 '''如果不使用lock那么,最后得到的数字不一定为0;同时lock不支持连续多次acquire,如果这样做了的后果是死锁!''' def add(): global total global lock for i in range(1000000): lock.acquire() total += 1 lock.release() def sub(): global total global lock for i in range(1000000): lock.acquire() total -= 1 lock.release() thread1 = Thread(target=add) thread2 = Thread(target=sub) # 将Thread1和2设置为守护线程,主线程完成时,子线程也一起结束 # thread1.setDaemon(True) # thread1.setDaemon(True) # 启动线程 thread1.start() thread2.start() # 阻塞,等待线程1和2完成,如果不使用join,那么主线程完成后,子线程也会自动关闭。 thread1.join() thread2.join() total
from threading import Thread, Lock, RLock lock = RLock() total = 0 def add(): global lock global total # RLock实现连续获取锁,但是需要相应数量的release来释放资源 for i in range(1000000): lock.acquire() lock.acquire() total += 1 lock.release() lock.release() def sub(): global lock global total for i in range(1000000): lock.acquire() total -= 1 lock.release() thread1 = Thread(target=add) thread2 = Thread(target=sub) thread1.start() thread2.start() thread1.join() thread2.join() total
from threading import Thread, Condition '''聊天 Peaple1 : How are you? Peaple2 : I`m fine, thank you! Peaple1 : What`s your job? Peaple2 : My job is teacher. ''' def Peaple1(condition): with condition: print('Peaple1 : ', 'How are you?') condition.notify() condition.wait() print('Peaple1 : ', 'What`s your job?') condition.notify() condition.wait() def Peaple2(condition): with condition: condition.wait() print('Peaple2 : ', 'I`m fine, thank you!') condition.notify() condition.wait() print('Peaple2 : ', 'My job is teacher.') condition.notify() if __name__ == '__main__': cond = Condition() thread1 = Thread(target=Peaple1, args=(cond,)) thread2 = Thread(target=Peaple2, args=(cond,)) # 此处thread2要比thread1提前启动,因为notify必须要有wait接收;如果先启动thread1,没有wait接收notify信号,那么将会死锁。 thread2.start() thread1.start() # thread1.join() # thread2.join()
#Semaphore 是用于控制进入数量的锁 #文件, 读、写, 写一般只是用于一个线程写,读可以允许有多个 import threading import time class HtmlSpider(threading.Thread): def __init__(self, url, sem): super().__init__() self.url = url self.sem = sem def run(self): time.sleep(2) print("Download {html} success\n".format(html=self.url)) self.sem.release() class UrlProducer(threading.Thread): def __init__(self, sem): super().__init__() self.sem = sem def run(self): for i in range(20): self.sem.acquire() html_thread = HtmlSpider("https://www.baidu.com/{}".format(i), self.sem) html_thread.start() if __name__ == "__main__": # 控制锁的数量, 每次同时会有3个线程获得锁,然后输出 sem = threading.Semaphore(3) url_producer = UrlProducer(sem) url_producer.start()
以上がスレッド間のリソース共有と、Python マルチスレッドで一般的に使用されるロック メカニズムの概要の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。