Python の逐次リスト アルゴリズムの複雑さに関する知識の紹介
この記事は、Python の逐次テーブル アルゴリズムの複雑さについての知識を提供します。これには一定の参考価値があります。必要な友人は参照できます。お役に立てば幸いです。
1. アルゴリズムの複雑さの紹介
アルゴリズムの時間と空間の特性について、最も重要なことはその 規模と傾向 であるため、アルゴリズムの複雑さを測定する関数は複雑さ 定数係数は無視できます。
Big O 表記法は、通常、特定のアルゴリズムの漸近時間計算量です。一般的に使用される漸近計算量関数の計算量は、次のように比較されます:
O(1)<O(logn)<O(n)<O(nlogn)<O(n^2)<O(n^3)<O(2^n)<O(n!)<O(n^n)
時間計算量の例を紹介します。2 つのコード例を比較して計算結果を確認してください。
import time start_time = time.time() for a in range(0,1001): for b in range(0,1001): for c in range(0,1001): if a+b+c ==1000 and a**2 + b**2 == c**2: print("a, b, c :%d, %d, %d" % (a, b ,c)) end_time = time.time() print("times:%d" % (end_time-start_time)) print("完成")
えええええ
時間計算量の計算方法:
import time start_time = time.time() for a in range(0,1001): for b in range(0,1001): c = 1000 - a - b if a**2 + b**2 == c**2: print("a, b, c :%d, %d, %d" % (a, b ,c)) end_time = time.time() print("times:%d" % (end_time-start_time)) print("完成")
2. シーケンス リストの時間計算量
リストの時間計算量のテスト
# 时间复杂度计算 # 1.基本步骤,基本操作,复杂度是O(1) # 2.顺序结构,按加法计算 # 3.循环,按照乘法 # 4.分支结构采用其中最大值 # 5.计算复杂度,只看最高次项,例如n^2+2的复杂度是O(n^2)
出力結果
リスト内のメソッドの複雑さ:
えええええ
辞書内のメソッドの複雑さ (補足)
# 测试 from timeit import Timer def test1(): list1 = [] for i in range(10000): list1.append(i) def test2(): list2 = [] for i in range(10000): # list2 += [i] # +=本身有优化,所以不完全等于list = list + [i] list2 = list2 + [i] def test3(): list3 = [i for i in range(10000)] def test4(): list4 = list(range(10000)) def test5(): list5 = [] for i in range(10000): list5.extend([i]) timer1 = Timer("test1()","from __main__ import test1") print("append:",timer1.timeit(1000)) timer2 = Timer("test2()","from __main__ import test2") print("+:",timer2.timeit(1000)) timer3 = Timer("test3()","from __main__ import test3") print("[i for i in range]:",timer3.timeit(1000)) timer4 = Timer("test4()","from __main__ import test4") print("list(range):",timer4.timeit(1000)) timer5 = Timer("test5()","from __main__ import test5") print("extend:",timer5.timeit(1000))
3. シーケンス テーブルのデータ構造
シーケンス テーブルの完全な情報には 2 つの部分が含まれます。1 つの部分はテーブル内の要素のセットであり、もう 1 つの部分はテーブル内の要素のセットです。記録する必要がある情報には、主に要素格納領域の容量と現在のテーブルの要素数が含まれます。
- ##ヘッダーとデータ領域の組み合わせ: ヘッダー情報(記録容量と存在要素数)と連続保存用データ領域の一体構造
- 別個の構造: ヘッダー情報とデータ領域は連続的に格納されず、一部の情報は実際のデータ領域を指すアドレス ユニットの格納に使用されます
- 2 つの違いと利点と欠点:
# 列表方法中复杂度 # index O(1) # append 0(1) # pop O(1) 无参数表示是从尾部向外取数 # pop(i) O(n) 从指定位置取,也就是考虑其最复杂的状况是从头开始取,n为列表的长度 # del O(n) 是一个个删除 # iteration O(n) # contain O(n) 其实就是in,也就是说需要遍历一遍 # get slice[x:y] O(K) 取切片,即K为Y-X # del slice O(n) 删除切片 # set slice O(n) 设置切片 # reverse O(n) 逆置 # concatenate O(k) 将两个列表加到一起,K为第二个列表的长度 # sort O(nlogn) 排序,和排序算法有关 # multiply O(nk) K为列表的长度
# 字典中的复杂度 # copy O(n) # get item O(1) # set item O(1) 设置 # delete item O(1) # contains(in) O(1) 字典不用遍历,所以可以一次找到 # iteration O(n)
2 挿入操作 (挿入、追加) を実行する際、要素の記憶領域がいっぱいの場合は、要素の記憶領域を 4 つの記憶領域に置き換えます。記憶領域を 2 倍にする
3. テーブルがすでに非常に大きい (しきい値が 50000) 場合は、ポリシーを変更してサイズを 2 倍にする方法を採用します。空き領域が多すぎるのを避けるため。
以上がPython の逐次リスト アルゴリズムの複雑さに関する知識の紹介の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











PHPは主に手順プログラミングですが、オブジェクト指向プログラミング(OOP)もサポートしています。 Pythonは、OOP、機能、手続き上のプログラミングなど、さまざまなパラダイムをサポートしています。 PHPはWeb開発に適しており、Pythonはデータ分析や機械学習などのさまざまなアプリケーションに適しています。

PHPはWeb開発と迅速なプロトタイピングに適しており、Pythonはデータサイエンスと機械学習に適しています。 1.PHPは、単純な構文と迅速な開発に適した動的なWeb開発に使用されます。 2。Pythonには簡潔な構文があり、複数のフィールドに適しており、強力なライブラリエコシステムがあります。

Pythonは、スムーズな学習曲線と簡潔な構文を備えた初心者により適しています。 JavaScriptは、急な学習曲線と柔軟な構文を備えたフロントエンド開発に適しています。 1。Python構文は直感的で、データサイエンスやバックエンド開発に適しています。 2。JavaScriptは柔軟で、フロントエンドおよびサーバー側のプログラミングで広く使用されています。

VSコードはWindows 8で実行できますが、エクスペリエンスは大きくない場合があります。まず、システムが最新のパッチに更新されていることを確認してから、システムアーキテクチャに一致するVSコードインストールパッケージをダウンロードして、プロンプトとしてインストールします。インストール後、一部の拡張機能はWindows 8と互換性があり、代替拡張機能を探すか、仮想マシンで新しいWindowsシステムを使用する必要があることに注意してください。必要な拡張機能をインストールして、適切に動作するかどうかを確認します。 Windows 8ではVSコードは実行可能ですが、開発エクスペリエンスとセキュリティを向上させるために、新しいWindowsシステムにアップグレードすることをお勧めします。

VSコードはPythonの書き込みに使用でき、Pythonアプリケーションを開発するための理想的なツールになる多くの機能を提供できます。ユーザーは以下を可能にします。Python拡張機能をインストールして、コードの完了、構文の強調表示、デバッグなどの関数を取得できます。デバッガーを使用して、コードを段階的に追跡し、エラーを見つけて修正します。バージョンコントロールのためにGitを統合します。コードフォーマットツールを使用して、コードの一貫性を維持します。糸くずツールを使用して、事前に潜在的な問題を発見します。

PHPは1994年に発信され、Rasmuslerdorfによって開発されました。もともとはウェブサイトの訪問者を追跡するために使用され、サーバー側のスクリプト言語に徐々に進化し、Web開発で広く使用されていました。 Pythonは、1980年代後半にGuidovan Rossumによって開発され、1991年に最初にリリースされました。コードの読みやすさとシンプルさを強調し、科学的コンピューティング、データ分析、その他の分野に適しています。

VSコードでは、次の手順を通じて端末でプログラムを実行できます。コードを準備し、統合端子を開き、コードディレクトリが端末作業ディレクトリと一致していることを確認します。プログラミング言語(pythonのpython your_file_name.pyなど)に従って実行コマンドを選択して、それが正常に実行されるかどうかを確認し、エラーを解決します。デバッガーを使用して、デバッグ効率を向上させます。

VSコード拡張機能は、悪意のあるコードの隠れ、脆弱性の活用、合法的な拡張機能としての自慰行為など、悪意のあるリスクを引き起こします。悪意のある拡張機能を識別する方法には、パブリッシャーのチェック、コメントの読み取り、コードのチェック、およびインストールに注意してください。セキュリティ対策には、セキュリティ認識、良好な習慣、定期的な更新、ウイルス対策ソフトウェアも含まれます。
