pandasでDataFrameの列名を変更する方法の紹介(コード例)
この記事では、pandas で DataFrame の列名を変更する方法 (コード例) を紹介します。一定の参考値があります。困っている友人は参考にしてください。お役に立てれば幸いです。
この記事の参照元: pandas DataFrame の列名の変更
元のブログでは、DataFrame.columns の各要素に対して同じ変更操作を行っています。
しかし、私の地味な作業は、異なる操作を行う機械的なコピーです。
#質問する
dataset>>> dataset.columns Index(['age', 'job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'day_of_week', 'duration', 'campaign', 'pdays', 'previous', 'poutcome', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed', 'y'], dtype='object')
columns名前が次のように変更されました:
>>> new_columns Index(['age_0', 'job_1', 'marital_2', 'education_3', 'default_4', 'housing_5', 'loan_6', 'contact_7', 'month_8', 'day_of_week_9', 'duration_10', 'campaign_11', 'pdays_12', 'previous_13', 'poutcome_14', 'emp.var.rate_15', 'cons.price.idx_16', 'cons.conf.idx_17', 'euribor3m_18', 'nr.employed_19', 'y_20'], dtype='object')
操作方法? #解決策
1. DataFrame.columns クラスの独自のプロパティを通じて変更します:
1. 脳の割り当てを必要としない直接変更 >>> # 先解决`new_columns`的推导问题
>>> # 列表推导
>>> new_columns_list = [column_str+'_'+str(i) for i ,column_str in enumerate(dataset.columns)]
>>> # 类型转换
>>> new_columns = pd.core.indexes.base.Index(new_columns_list)
>>> dataset.columns = new_columns
ログイン後にコピー
2. >>> # 先解决`new_columns`的推导问题 >>> # 列表推导 >>> new_columns_list = [column_str+'_'+str(i) for i ,column_str in enumerate(dataset.columns)] >>> # 类型转换 >>> new_columns = pd.core.indexes.base.Index(new_columns_list) >>> dataset.columns = new_columns
.map(mapper, na_action=None) 関数を使用して
>>> # 注:mapper 多运用 lambda 表达式
>>> # 但我似乎没有找到在 lambda 表达式中改变两个值的方法
>>> # 所以只能蹩脚地用一个全局变量i, 和映射函数mapper()
>>> # 希望大家能帮我找到方法
>>> i = 0
>>> def mapper(x): # 映射函数即 mapper
global i
x += '_' + str(i)
i += 1
return x
>>> dataset.columns.map(mapper)
ログイン後にコピー
3 を変更します。ブログを参照してください。 >>> # 注:mapper 多运用 lambda 表达式 >>> # 但我似乎没有找到在 lambda 表达式中改变两个值的方法 >>> # 所以只能蹩脚地用一个全局变量i, 和映射函数mapper() >>> # 希望大家能帮我找到方法 >>> i = 0 >>> def mapper(x): # 映射函数即 mapper global i x += '_' + str(i) i += 1 return x >>> dataset.columns.map(mapper)
DataFrame.columns.strObject
used
help(DataFrame.columns.str)ドキュメントを検索しましたが、できませんでした。使用できるものが見つかりません。メソッドを適用しています。時間をかけてこのドキュメントを翻訳したいと思います
#2。DataFrame.rename() 関数を使用して変更します
#1. 暴力的な辞書方式 (利点: 特定の列のみを変更できる)>>> # 此处先用字典推导法
>>> new_dict = {
key:key+'_'+str(i)
for i, key in enumerate(dataset.columns)
}
>>> dataset.rename(columns=new_dict, inplace=True)
>>> # 原博文依然用到了 lambda 表达式 >>> # 我就再生搬硬套一次, 把上面的复制过来 >>> # 蹩脚地用一个全局变量i, 和映射函数mapper() >>> i = 0 >>> def mapper(x): # 映射函数即 mapper global i x += '_' + str(i) i += 1 return x dataset.rename(columns=mapper, inplace=True)
少し要約すると、辞書の使用導出とリスト導出は非常に似ていますが、最大の違いは角括弧を選択するか中括弧を選択するかです。
以上がpandasでDataFrameの列名を変更する方法の紹介(コード例)の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

PytorchをCentosシステムにインストールする場合、適切なバージョンを慎重に選択し、次の重要な要因を検討する必要があります。1。システム環境互換性:オペレーティングシステム:Centos7以上を使用することをお勧めします。 Cuda and Cudnn:PytorchバージョンとCudaバージョンは密接に関連しています。たとえば、pytorch1.9.0にはcuda11.1が必要ですが、pytorch2.0.1にはcuda11.3が必要です。 CUDNNバージョンは、CUDAバージョンとも一致する必要があります。 Pytorchバージョンを選択する前に、互換性のあるCUDAおよびCUDNNバージョンがインストールされていることを確認してください。 Pythonバージョン:Pytorch公式支店

VSコードでは、次の手順を通じて端末でプログラムを実行できます。コードを準備し、統合端子を開き、コードディレクトリが端末作業ディレクトリと一致していることを確認します。プログラミング言語(pythonのpython your_file_name.pyなど)に従って実行コマンドを選択して、それが正常に実行されるかどうかを確認し、エラーを解決します。デバッガーを使用して、デバッグ効率を向上させます。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

VSコード拡張機能は、悪意のあるコードの隠れ、脆弱性の活用、合法的な拡張機能としての自慰行為など、悪意のあるリスクを引き起こします。悪意のある拡張機能を識別する方法には、パブリッシャーのチェック、コメントの読み取り、コードのチェック、およびインストールに注意してください。セキュリティ対策には、セキュリティ認識、良好な習慣、定期的な更新、ウイルス対策ソフトウェアも含まれます。

NGINXのインストールをインストールするには、次の手順に従う必要があります。開発ツール、PCRE-Devel、OpenSSL-Develなどの依存関係のインストール。 nginxソースコードパッケージをダウンロードし、それを解凍してコンパイルしてインストールし、/usr/local/nginxとしてインストールパスを指定します。 nginxユーザーとユーザーグループを作成し、アクセス許可を設定します。構成ファイルnginx.confを変更し、リスニングポートとドメイン名/IPアドレスを構成します。 nginxサービスを開始します。依存関係の問題、ポート競合、構成ファイルエラーなど、一般的なエラーに注意する必要があります。パフォーマンスの最適化は、キャッシュをオンにしたり、ワーカープロセスの数を調整するなど、特定の状況に応じて調整する必要があります。
