バイナリ ツリー アルゴリズムの Python 実装例
この記事では、Python でバイナリ ツリーを実装するためのアルゴリズムの例をいくつか紹介します。一定の参考値があります。必要な友人は参照してください。お役に立てば幸いです。
ノード定義
class Node(object): def __init__(self, left_child, right_child, value): self._left_child = left_child self._right_child = right_child self._value = value @property def left_child(self): return self._left_child @property def right_child(self): return self._right_child @left_child.setter def left_child(self, value): self._left_child = value @right_child.setter def right_child(self, value): self._right_child = value @property def value(self): return self._value @value.setter def value(self, value): self._value = value
バイナリ ツリー定義
class Tree(object): def __init__(self, value): self._root = Node(None, None, value=value) @property def root(self): return self._root
プリオーダー トラバーサル
再帰的メソッド
''' 先序遍历,递归方式 ''' def preoder(root): if not isinstance(root, Node): return None preorder_res = [] if root: preorder_res.append(root.value) preorder_res += preoder(root.left_child) preorder_res += preoder(root.right_child) return preorder_res
Non-再帰的メソッド
''' 先序遍历,非递归方式 ''' def pre_order_not_recursion(root): if not isinstance(root, Node): return None stack = [root] result = [] while stack: node = stack.pop(-1) if node: result.append(node.value) stack.append(node.right_child) stack.append(node.left_child) return result
順序トラバーサル
再帰的メソッド
''' 中序遍历,递归方式 ''' def middle_order(root): if not isinstance(root, Node): return None middle_res = [] if root: middle_res += middle_order(root.left_child) middle_res.append(root.value) middle_res += middle_order(root.right_child) return middle_res
非再帰的メソッド
''' 中序遍历,非递归方式 ''' def middle_order_bot_recursion(root): if not isinstance(root, Node): return None result = [] stack = [root.right_child, root.value, root.left_child] while stack: temp = stack.pop(-1) if temp: if isinstance(temp, Node): stack.append(temp.right_child) stack.append(temp.value) stack.append(temp.left_child) else: result.append(temp) return result
後順トラバーサル
再帰的メソッド
''' 后序遍历,递归方式 ''' def post_order(root): if not isinstance(root, Node): return None post_res = [] if root: post_res += post_order(root.left_child) post_res += post_order(root.right_child) post_res.append(root.value) return post_res
非再帰メソッド
''' 后序遍历,非递归方式 ''' def post_order_not_recursion(root): if not isinstance(root, Node): return None stack = [root.value, root.right_child, root.left_child] result = [] while stack: temp_node = stack.pop(-1) if temp_node: if isinstance(temp_node, Node): stack.append(temp_node.value) stack.append(temp_node.right_child) stack.append(temp_node.left_child) else: result.append(temp_node) return result
階層トラバーサル
''' 分层遍历,使用队列实现 ''' def layer_order(root): if not isinstance(root, Node): return None queue = [root.value, root.left_child, root.right_child] result = [] while queue: temp = queue.pop(0) if temp: if isinstance(temp, Node): queue.append(temp.value) queue.append(temp.left_child) queue.append(temp.right_child) else: result.append(temp) return result
二分木のノード数を計算する
''' 计算二叉树结点个数,递归方式 NodeCount(root) = NodeCount(root.left_child) + NodeCount(root.right_child) ''' def node_count(root): if root and not isinstance(root, Node): return None if root: return node_count(root.left_child) + node_count(root.right_child) + 1 else: return 0 ''' 计算二叉树结点个数,非递归方式 借用分层遍历计算 ''' def node_count_not_recursion(root): if root and not isinstance(root, Node): return None return len(layer_order(root))
二分木の深さを計算する
''' 计算二叉树深度,递归方式 tree_deep(root) = 1 + max(tree_deep(root.left_child), tree_deep(root.right_child)) ''' def tree_deep(root): if root and not isinstance(root, Node): return None if root: return 1 + max(tree_deep(root.left_child), tree_deep(root.right_child)) else: return 0 ''' 计算二叉树深度,非递归方法 同理参考分层遍历的思想 ''' def tree_deep_not_recursion(root): if root and not isinstance(root, Node): return None result = 0 queue = [(root, 1)] while queue: temp_node, temp_layer = queue.pop(0) if temp_node: queue.append((temp_node.left_child, temp_layer+1)) queue.append((temp_node.right_child, temp_layer+1)) result = temp_layer + 1 return result-1
二分木のノード数を計算する k-レベルノードの数
''' 计算二叉树第k层节点个数,递归方式 kth_node_count(root, k) = kth_node_count(root.left_count, k-1) + kth_node_count(root.right_count, k-1) ''' def kth_node_count(root, k): if root and not isinstance(root, Node): return None if not root or k <= 0: return 0 if k == 1: return 1 return kth_node_count(root.left_child, k-1) + kth_node_count(root.right_child, k-1) ''' 计算二叉树第K层节点个数,非递归方式 ''' def kth_node_count_not_recursion(root, k): if root and not isinstance(root, Node): return None if not root or k <= 0: return 0 if k == 1: return 1 queue = [(root, 1)] result = 0 while queue: temp_node, temp_layer = queue.pop(0) if temp_node: if temp_layer == k: result += 1 elif temp_layer > k: return result else: queue.append((temp_node.left_child, temp_layer+1)) queue.append((temp_node.right_child, temp_layer+1)) return result
二分木の葉ノード数を計算する
''' 计算二叉树叶子节点个数,递归方式 关键点是叶子节点的判断标准,左右孩子皆为None ''' def leaf_count(root): if root and not isinstance(root, Node): return None if not root: return 0 if not root.left_child and not root.right_child: return 1 return leaf_count(root.left_child) + leaf_count(root.right_child)
2つの二分木が正しいかどうかを判断します同じ
''' 判断两个二叉树是不是相同,递归方式 isSame(root1, root2) = (root1.value == root2.value) and isSame(root1.left, root2.left) and isSame(root1.right, root2.right) ''' def is_same_tree(root1, root2): if not root1 and not root2: return True if root1 and root2: return (root1.value == root2.value) and \ is_same_tree(root1.left_child, root2.left_child) and \ is_same_tree(root1.right_child, root2.right_child) else: return False
二分探索木BSTかどうかの判定
''' 判断是否为二分查找树BST,递归方式 二分查找树的定义搞清楚,二分查找树的中序遍历结果为递增序列 ''' def is_bst_tree(root): if root and not isinstance(root, Node): return None def is_asc(order): for i in range(len(order)-1): if order[i] > order[i+1]: return False return True return is_asc(middle_order_bot_recursion(root))
テスト方法
if __name__ == "__main__": tree = Tree(1) tree1 = Tree(1) node6 = Node(None, None, 7) node5 = Node(None, None, 6) node4 = Node(None, None, 5) node3 = Node(None, None, 4) node2 = Node(node5, node6, 3) node1 = Node(node3, node4, 2) tree.root.left_child = node1 tree.root.right_child = node2 tree1.root.left_child = node2 tree1.root.right_child = node2 print(is_bst_tree(tree.root))
以上がバイナリ ツリー アルゴリズムの Python 実装例の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

VSコードはPythonの書き込みに使用でき、Pythonアプリケーションを開発するための理想的なツールになる多くの機能を提供できます。ユーザーは以下を可能にします。Python拡張機能をインストールして、コードの完了、構文の強調表示、デバッグなどの関数を取得できます。デバッガーを使用して、コードを段階的に追跡し、エラーを見つけて修正します。バージョンコントロールのためにGitを統合します。コードフォーマットツールを使用して、コードの一貫性を維持します。糸くずツールを使用して、事前に潜在的な問題を発見します。

VSコードでは、次の手順を通じて端末でプログラムを実行できます。コードを準備し、統合端子を開き、コードディレクトリが端末作業ディレクトリと一致していることを確認します。プログラミング言語(pythonのpython your_file_name.pyなど)に従って実行コマンドを選択して、それが正常に実行されるかどうかを確認し、エラーを解決します。デバッガーを使用して、デバッグ効率を向上させます。

VSコード拡張機能は、悪意のあるコードの隠れ、脆弱性の活用、合法的な拡張機能としての自慰行為など、悪意のあるリスクを引き起こします。悪意のある拡張機能を識別する方法には、パブリッシャーのチェック、コメントの読み取り、コードのチェック、およびインストールに注意してください。セキュリティ対策には、セキュリティ認識、良好な習慣、定期的な更新、ウイルス対策ソフトウェアも含まれます。

VSコードはWindows 8で実行できますが、エクスペリエンスは大きくない場合があります。まず、システムが最新のパッチに更新されていることを確認してから、システムアーキテクチャに一致するVSコードインストールパッケージをダウンロードして、プロンプトとしてインストールします。インストール後、一部の拡張機能はWindows 8と互換性があり、代替拡張機能を探すか、仮想マシンで新しいWindowsシステムを使用する必要があることに注意してください。必要な拡張機能をインストールして、適切に動作するかどうかを確認します。 Windows 8ではVSコードは実行可能ですが、開発エクスペリエンスとセキュリティを向上させるために、新しいWindowsシステムにアップグレードすることをお勧めします。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。
