目次
バイナリ ツリー定義
プリオーダー トラバーサル
再帰的メソッド
Non-再帰的メソッド
順序トラバーサル
非再帰的メソッド
後順トラバーサル
非再帰メソッド
階層トラバーサル
二分木のノード数を計算する
二分木の深さを計算する
二分木のノード数を計算する k-レベルノードの数
二分木の葉ノード数を計算する
2つの二分木が正しいかどうかを判断します同じ
二分探索木BSTかどうかの判定
テスト方法
ホームページ バックエンド開発 Python チュートリアル バイナリ ツリー アルゴリズムの Python 実装例

バイナリ ツリー アルゴリズムの Python 実装例

Feb 25, 2019 am 10:42 AM
python 二分木 アルゴリズム

この記事では、Python でバイナリ ツリーを実装するためのアルゴリズムの例をいくつか紹介します。一定の参考値があります。必要な友人は参照してください。お役に立てば幸いです。

ノード定義

class Node(object):
    def __init__(self, left_child, right_child, value):
        self._left_child = left_child
        self._right_child = right_child
        self._value = value

    @property
    def left_child(self):
        return self._left_child

    @property
    def right_child(self):
        return self._right_child

    @left_child.setter
    def left_child(self, value):
        self._left_child = value

    @right_child.setter
    def right_child(self, value):
        self._right_child = value

    @property
    def value(self):
        return self._value

    @value.setter
    def value(self, value):
        self._value = value
ログイン後にコピー

バイナリ ツリー定義

class Tree(object):
    def __init__(self, value):
        self._root = Node(None, None, value=value)

    @property
    def root(self):
        return self._root
ログイン後にコピー

プリオーダー トラバーサル

再帰的メソッド

'''
先序遍历,递归方式
'''
def preoder(root):
    if not isinstance(root, Node):
        return None
    preorder_res = []
    if root:
        preorder_res.append(root.value)
        preorder_res += preoder(root.left_child)
        preorder_res += preoder(root.right_child)

    return preorder_res
ログイン後にコピー

Non-再帰的メソッド

'''
先序遍历,非递归方式
'''
def pre_order_not_recursion(root):
    if not isinstance(root, Node):
        return None

    stack = [root]
    result = []
    while stack:
        node = stack.pop(-1)
        if node:
            result.append(node.value)
            stack.append(node.right_child)
            stack.append(node.left_child)
    return result
ログイン後にコピー

順序トラバーサル

再帰的メソッド

'''
中序遍历,递归方式
'''
def middle_order(root):
    if not isinstance(root, Node):
        return None
    middle_res = []
    if root:
        middle_res += middle_order(root.left_child)
        middle_res.append(root.value)
        middle_res += middle_order(root.right_child)
    return middle_res
ログイン後にコピー

非再帰的メソッド

'''
中序遍历,非递归方式
'''
def middle_order_bot_recursion(root):
    if not isinstance(root, Node):
        return None

    result = []
    stack = [root.right_child, root.value, root.left_child]
    while stack:
        temp = stack.pop(-1)
        if temp:
            if isinstance(temp, Node):
                stack.append(temp.right_child)
                stack.append(temp.value)
                stack.append(temp.left_child)
            else:
                result.append(temp)
    return result
ログイン後にコピー

後順トラバーサル

再帰的メソッド

'''
后序遍历,递归方式
'''
def post_order(root):
    if not isinstance(root, Node):
        return None
    post_res = []
    if root:
        post_res += post_order(root.left_child)
        post_res += post_order(root.right_child)
        post_res.append(root.value)
    return post_res
ログイン後にコピー

非再帰メソッド

'''
后序遍历,非递归方式
'''
def post_order_not_recursion(root):
    if not isinstance(root, Node):
        return None

    stack = [root.value, root.right_child, root.left_child]
    result = []

    while stack:
        temp_node = stack.pop(-1)
        if temp_node:
            if isinstance(temp_node, Node):
                stack.append(temp_node.value)
                stack.append(temp_node.right_child)
                stack.append(temp_node.left_child)
            else:
                result.append(temp_node)

    return result
ログイン後にコピー

階層トラバーサル

'''
分层遍历,使用队列实现
'''
def layer_order(root):
    if not isinstance(root, Node):
        return None

    queue = [root.value, root.left_child, root.right_child]
    result = []
    while queue:
        temp = queue.pop(0)
        if temp:
            if isinstance(temp, Node):
                queue.append(temp.value)
                queue.append(temp.left_child)
                queue.append(temp.right_child)
            else:
                result.append(temp)

    return result
ログイン後にコピー

二分木のノード数を計算する

'''
计算二叉树结点个数,递归方式
NodeCount(root) = NodeCount(root.left_child) + NodeCount(root.right_child)
'''
def node_count(root):
    if root and not isinstance(root, Node):
        return None

    if root:
        return node_count(root.left_child) + node_count(root.right_child) + 1
    else:
        return 0


'''
计算二叉树结点个数,非递归方式
借用分层遍历计算
'''
def node_count_not_recursion(root):
    if root and not isinstance(root, Node):
        return None

    return len(layer_order(root))
ログイン後にコピー

二分木の深さを計算する

'''
计算二叉树深度,递归方式
tree_deep(root) = 1 + max(tree_deep(root.left_child), tree_deep(root.right_child))
'''
def tree_deep(root):
    if root and not isinstance(root, Node):
        return None

    if root:
        return 1 + max(tree_deep(root.left_child), tree_deep(root.right_child))
    else:
        return 0

'''
计算二叉树深度,非递归方法
同理参考分层遍历的思想
'''
def tree_deep_not_recursion(root):
    if root and not isinstance(root, Node):
        return None
    result = 0
    queue = [(root, 1)]
    while queue:
        temp_node, temp_layer = queue.pop(0)
        if temp_node:
            queue.append((temp_node.left_child, temp_layer+1))
            queue.append((temp_node.right_child, temp_layer+1))
            result = temp_layer + 1

    return result-1
ログイン後にコピー

二分木のノード数を計算する k-レベルノードの数

'''
计算二叉树第k层节点个数,递归方式
kth_node_count(root, k) = kth_node_count(root.left_count, k-1) + kth_node_count(root.right_count, k-1)
'''
def kth_node_count(root, k):
    if root and not isinstance(root, Node):
        return None

    if not root or k <= 0:
        return 0
    if k == 1:
        return 1
    return kth_node_count(root.left_child, k-1) + kth_node_count(root.right_child, k-1)

&#39;&#39;&#39;
计算二叉树第K层节点个数,非递归方式
&#39;&#39;&#39;
def kth_node_count_not_recursion(root, k):
    if root and not isinstance(root, Node):
        return None

    if not root or k <= 0:
        return 0

    if k == 1:
        return 1

    queue = [(root, 1)]
    result = 0
    while queue:
        temp_node, temp_layer = queue.pop(0)
        if temp_node:
            if temp_layer == k:
                result += 1
            elif temp_layer > k:
                return result
            else:
                queue.append((temp_node.left_child, temp_layer+1))
                queue.append((temp_node.right_child, temp_layer+1))
    return result
ログイン後にコピー

二分木の葉ノード数を計算する

'''
计算二叉树叶子节点个数,递归方式
关键点是叶子节点的判断标准,左右孩子皆为None
'''
def leaf_count(root):
    if root and not isinstance(root, Node):
        return None

    if not root:
        return 0
    if not root.left_child and not root.right_child:
        return 1

    return leaf_count(root.left_child) + leaf_count(root.right_child)
ログイン後にコピー

2つの二分木が正しいかどうかを判断します同じ

'''
判断两个二叉树是不是相同,递归方式
isSame(root1, root2) = (root1.value == root2.value)
                    and isSame(root1.left, root2.left) 
                    and isSame(root1.right, root2.right)
'''
def is_same_tree(root1, root2):
    if not root1 and not root2:
        return True

    if root1 and root2:
        return (root1.value == root2.value) and \
               is_same_tree(root1.left_child, root2.left_child) and \
               is_same_tree(root1.right_child, root2.right_child)
    else:
        return False
ログイン後にコピー

二分探索木BSTかどうかの判定

'''
判断是否为二分查找树BST,递归方式
二分查找树的定义搞清楚,二分查找树的中序遍历结果为递增序列
'''
def is_bst_tree(root):
    if root and not isinstance(root, Node):
        return None

    def is_asc(order):
        for i in range(len(order)-1):
            if order[i] > order[i+1]:
                return False
        return True

    return is_asc(middle_order_bot_recursion(root))
ログイン後にコピー

テスト方法

if __name__ == "__main__":
    tree = Tree(1)
    tree1 = Tree(1)
    node6 = Node(None, None, 7)
    node5 = Node(None, None, 6)
    node4 = Node(None, None, 5)
    node3 = Node(None, None, 4)
    node2 = Node(node5, node6, 3)
    node1 = Node(node3, node4, 2)
    tree.root.left_child = node1
    tree.root.right_child = node2
    tree1.root.left_child = node2
    tree1.root.right_child = node2
    print(is_bst_tree(tree.root))
ログイン後にコピー

以上がバイナリ ツリー アルゴリズムの Python 実装例の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

PHPおよびPython:コードの例と比較 PHPおよびPython:コードの例と比較 Apr 15, 2025 am 12:07 AM

PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

Python vs. JavaScript:コミュニティ、ライブラリ、リソース Python vs. JavaScript:コミュニティ、ライブラリ、リソース Apr 15, 2025 am 12:16 AM

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

Dockerの原則の詳細な説明 Dockerの原則の詳細な説明 Apr 14, 2025 pm 11:57 PM

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

Visual StudioコードはPythonで使用できますか Visual StudioコードはPythonで使用できますか Apr 15, 2025 pm 08:18 PM

VSコードはPythonの書き込みに使用でき、Pythonアプリケーションを開発するための理想的なツールになる多くの機能を提供できます。ユーザーは以下を可能にします。Python拡張機能をインストールして、コードの完了、構文の強調表示、デバッグなどの関数を取得できます。デバッガーを使用して、コードを段階的に追跡し、エラーを見つけて修正します。バージョンコントロールのためにGitを統合します。コードフォーマットツールを使用して、コードの一貫性を維持します。糸くずツールを使用して、事前に潜在的な問題を発見します。

ターミナルVSCODEでプログラムを実行する方法 ターミナルVSCODEでプログラムを実行する方法 Apr 15, 2025 pm 06:42 PM

VSコードでは、次の手順を通じて端末でプログラムを実行できます。コードを準備し、統合端子を開き、コードディレクトリが端末作業ディレクトリと一致していることを確認します。プログラミング言語(pythonのpython your_file_name.pyなど)に従って実行コマンドを選択して、それが正常に実行されるかどうかを確認し、エラーを解決します。デバッガーを使用して、デバッグ効率を向上させます。

VSCODE拡張機能は悪意がありますか? VSCODE拡張機能は悪意がありますか? Apr 15, 2025 pm 07:57 PM

VSコード拡張機能は、悪意のあるコードの隠れ、脆弱性の活用、合法的な拡張機能としての自慰行為など、悪意のあるリスクを引き起こします。悪意のある拡張機能を識別する方法には、パブリッシャーのチェック、コメントの読み取り、コードのチェック、およびインストールに注意してください。セキュリティ対策には、セキュリティ認識、良好な習慣、定期的な更新、ウイルス対策ソフトウェアも含まれます。

Windows 8でコードを実行できます Windows 8でコードを実行できます Apr 15, 2025 pm 07:24 PM

VSコードはWindows 8で実行できますが、エクスペリエンスは大きくない場合があります。まず、システムが最新のパッチに更新されていることを確認してから、システムアーキテクチャに一致するVSコードインストールパッケージをダウンロードして、プロンプトとしてインストールします。インストール後、一部の拡張機能はWindows 8と互換性があり、代替拡張機能を探すか、仮想マシンで新しいWindowsシステムを使用する必要があることに注意してください。必要な拡張機能をインストールして、適切に動作するかどうかを確認します。 Windows 8ではVSコードは実行可能ですが、開発エクスペリエンスとセキュリティを向上させるために、新しいWindowsシステムにアップグレードすることをお勧めします。

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

See all articles