ホームページ バックエンド開発 Python チュートリアル Python が Excel データを処理する方法

Python が Excel データを処理する方法

Feb 28, 2019 am 10:21 AM
python

python处理excel数据的方法:1、使用xlrd来处理;2、使用【xlutils+xlrd】来处理;3、使用xlwt来处理;4、使用pyExcelerator来处理;5、使用Pandas库来处理。

Python が Excel データを処理する方法

这里有一张excel数据表,下面我们通过示例来看看xlrd、xlwt、xluntils、pyExcelerator和Pandas是如何处理excel文件数据的。【视频教程推荐:python教程

python处理excel数据的方法:

方法一:使用xlrd来处理excel数据

示例1:python读取excel文件特定数据

import xlrd
data = xlrd.open_workbook('test.xls') # 打开xls文件
table = data.sheets()[0] # 打开第一张表
nrows = table.nrows # 获取表的行数
# 循环逐行输出
for i in range(nrows): 
   if i == 0: # 跳过第一行
       continue
   print table.row_values(i)[:13] # 取前十三列数据
ログイン後にコピー

示例2:python读取excel文件所有数据

import xlrd
#打开一个xls文件
workbook = xlrd.open_workbook('test.xls')
#抓取所有sheet页的名称
worksheets = workbook.sheet_names()
print('worksheets is %s' %worksheets)
#定位到sheet1
worksheet1 = workbook.sheet_by_name(u'Sheet1')


"""
#通过索引顺序获取
worksheet1 = workbook.sheets()[0]
#或
worksheet1 = workbook.sheet_by_index(0)
"""
"""
#遍历所有sheet对象
for worksheet_name in worksheets:
worksheet = workbook.sheet_by_name(worksheet_name)
"""


#遍历sheet1中所有行row
num_rows = worksheet1.nrows
for curr_row in range(num_rows):
row = worksheet1.row_values(curr_row)
print('row%s is %s' %(curr_row,row))
#遍历sheet1中所有列col
num_cols = worksheet1.ncols
for curr_col in range(num_cols):
col = worksheet1.col_values(curr_col)
print('col%s is %s' %(curr_col,col))
#遍历sheet1中所有单元格cell
for rown in range(num_rows):
for coln in range(num_cols):
cell = worksheet1.cell_value(rown,coln)
print cell
ログイン後にコピー

方法二:使用xlutils+xlrd来处理excel数据

示例:向excel文件中写入数据

import xlrd
import xlutils.copy
#打开一个xls文件
rb = xlrd.open_workbook('test.xls')
wb = xlutils.copy.copy(rb)

#获取sheet对象,通过sheet_by_index()获取的sheet对象没有write()方法
ws = wb.get_sheet(0)

#写入数据
ws.write(1, 1, 'changed!')

#添加sheet页
wb.add_sheet('sheetnnn2',cell_overwrite_ok=True)

#利用保存时同名覆盖达到修改excel文件的目的,注意未被修改的内容保持不变
wb.save('test.xls')
ログイン後にコピー

方法三:使用xlwt来处理excel数据

示例1:新建excel文件并写入数据

import xlwt
#创建workbook和sheet对象
workbook = xlwt.Workbook() #注意Workbook的开头W要大写
sheet1 = workbook.add_sheet('sheet1',cell_overwrite_ok=True)
sheet2 = workbook.add_sheet('sheet2',cell_overwrite_ok=True)

#向sheet页中写入数据
sheet1.write(0,0,'this should overwrite1')
sheet1.write(0,1,'aaaaaaaaaaaa')
sheet2.write(0,0,'this should overwrite2')
sheet2.write(1,2,'bbbbbbbbbbbbb')

#保存该excel文件,有同名文件时直接覆盖
workbook.save('test.xls')
print '创建excel文件完成!'
ログイン後にコピー

方法四:使用pyExcelerator来处理excel数据

示例1:读excel文件中的数据

import pyExcelerator
#parse_xls返回一个列表,每项都是一个sheet页的数据。
#每项是一个二元组(表名,单元格数据)。其中单元格数据为一个字典,键值就是单元格的索引(i,j)。如果某个单元格无数据,那么就不存在这个值
sheets = pyExcelerator.parse_xls('test.xls')
print sheets
ログイン後にコピー

示例2:新建excel文件并写入数据

import pyExcelerator
#创建workbook和sheet对象
wb = pyExcelerator.Workbook()
ws = wb.add_sheet(u'第一页')

#设置样式
myfont = pyExcelerator.Font()
myfont.name = u'Times New Roman'
myfont.bold = True
mystyle = pyExcelerator.XFStyle()
mystyle.font = myfont

#写入数据,使用样式
ws.write(0,0,u'ni hao 帕索!',mystyle)

#保存该excel文件,有同名文件时直接覆盖
wb.save('E:\\Code\\Python\\mini.xls')
print '创建excel文件完成!'
ログイン後にコピー

方法五:使用Pandas库来处理excel数据

示例1:读取excel数据

#导入pandas模块
import pandas as pd
#直接默认读取到这个Excel的第一个表单
sheet = pd.read_excel('test.xls')

#默认读取前5行数据
data=sheet.head()
print("获取到所有的值:\n{0}".format(data))#格式化输出


#也可以通过指定表单名来读取数据
sheet2=pd.read_excel('test.xlsx',sheet_name='userRegister')
data2=sheet2.head()#默认读取前5行数据
print("获取到所有的值:\n{0}".format(data2))#格式化输出
ログイン後にコピー

示例2:操作Excel中的行列

#导入pandas模块
import pandas as pd
sheet=pd.read_excel('webservice_testcase.xlsx')#这个会直接默认读取到这个Excel的第一个表单

#读取制定的某一行数据:
data=sheet.ix[0].values   #0表示第一行 这里读取数据并不包含表头
print("读取指定行的数据:\n{0}".format(data))

#读取指定的多行:
data2=sheet.ix[[0,1]].values 
print("读取指定行的数据:\n{0}".format(data2))

#读取指定行列的数据:
data3=sheet.ix[0,1]#读取第一行第二列的值
print("读取指定行的数据:\n{0}".format(data3))

#读取指定的多行多列的值:
data4=sheet.ix[[1,2],['姓名','电话']].values    #读取第二行第三行的姓名以及电话列的值,这里需要嵌套列表
print("读取指定行的数据:\n{0}".format(data4))

#读取所有行指定的列的值:
data5=sheet.ix[:,['姓名','电话']].values   #姓名以及电话列的值
print("读取指定行的数据:\n{0}".format(data5))

#获取行号输出:
print("输出行号列表",sheet.index.values)

#获取列名输出:
print("输出列标题",sheet.columns.values)
ログイン後にコピー

以上就是本篇文章的全部内容,希望能对大家的学习有所帮助。更多精彩内容大家可以关注php中文网相关教程栏目!!!

以上がPython が Excel データを処理する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

PHPおよびPython:さまざまなパラダイムが説明されています PHPおよびPython:さまざまなパラダイムが説明されています Apr 18, 2025 am 12:26 AM

PHPは主に手順プログラミングですが、オブジェクト指向プログラミング(OOP)もサポートしています。 Pythonは、OOP、機能、手続き上のプログラミングなど、さまざまなパラダイムをサポートしています。 PHPはWeb開発に適しており、Pythonはデータ分析や機械学習などのさまざまなアプリケーションに適しています。

PHPとPythonの選択:ガイド PHPとPythonの選択:ガイド Apr 18, 2025 am 12:24 AM

PHPはWeb開発と迅速なプロトタイピングに適しており、Pythonはデータサイエンスと機械学習に適しています。 1.PHPは、単純な構文と迅速な開発に適した動的なWeb開発に使用されます。 2。Pythonには簡潔な構文があり、複数のフィールドに適しており、強力なライブラリエコシステムがあります。

Python vs. JavaScript:学習曲線と使いやすさ Python vs. JavaScript:学習曲線と使いやすさ Apr 16, 2025 am 12:12 AM

Pythonは、スムーズな学習曲線と簡潔な構文を備えた初心者により適しています。 JavaScriptは、急な学習曲線と柔軟な構文を備えたフロントエンド開発に適しています。 1。Python構文は直感的で、データサイエンスやバックエンド開発に適しています。 2。JavaScriptは柔軟で、フロントエンドおよびサーバー側のプログラミングで広く使用されています。

PHPとPython:彼らの歴史を深く掘り下げます PHPとPython:彼らの歴史を深く掘り下げます Apr 18, 2025 am 12:25 AM

PHPは1994年に発信され、Rasmuslerdorfによって開発されました。もともとはウェブサイトの訪問者を追跡するために使用され、サーバー側のスクリプト言語に徐々に進化し、Web開発で広く使用されていました。 Pythonは、1980年代後半にGuidovan Rossumによって開発され、1991年に最初にリリースされました。コードの読みやすさとシンプルさを強調し、科学的コンピューティング、データ分析、その他の分野に適しています。

Windows 8でコードを実行できます Windows 8でコードを実行できます Apr 15, 2025 pm 07:24 PM

VSコードはWindows 8で実行できますが、エクスペリエンスは大きくない場合があります。まず、システムが最新のパッチに更新されていることを確認してから、システムアーキテクチャに一致するVSコードインストールパッケージをダウンロードして、プロンプトとしてインストールします。インストール後、一部の拡張機能はWindows 8と互換性があり、代替拡張機能を探すか、仮想マシンで新しいWindowsシステムを使用する必要があることに注意してください。必要な拡張機能をインストールして、適切に動作するかどうかを確認します。 Windows 8ではVSコードは実行可能ですが、開発エクスペリエンスとセキュリティを向上させるために、新しいWindowsシステムにアップグレードすることをお勧めします。

Visual StudioコードはPythonで使用できますか Visual StudioコードはPythonで使用できますか Apr 15, 2025 pm 08:18 PM

VSコードはPythonの書き込みに使用でき、Pythonアプリケーションを開発するための理想的なツールになる多くの機能を提供できます。ユーザーは以下を可能にします。Python拡張機能をインストールして、コードの完了、構文の強調表示、デバッグなどの関数を取得できます。デバッガーを使用して、コードを段階的に追跡し、エラーを見つけて修正します。バージョンコントロールのためにGitを統合します。コードフォーマットツールを使用して、コードの一貫性を維持します。糸くずツールを使用して、事前に潜在的な問題を発見します。

メモ帳でPythonを実行する方法 メモ帳でPythonを実行する方法 Apr 16, 2025 pm 07:33 PM

メモ帳でPythonコードを実行するには、Python実行可能ファイルとNPPEXECプラグインをインストールする必要があります。 Pythonをインストールしてパスを追加した後、nppexecプラグインでコマンド「python」とパラメーター "{current_directory} {file_name}"を構成して、メモ帳のショートカットキー「F6」を介してPythonコードを実行します。

VSCODE拡張機能は悪意がありますか? VSCODE拡張機能は悪意がありますか? Apr 15, 2025 pm 07:57 PM

VSコード拡張機能は、悪意のあるコードの隠れ、脆弱性の活用、合法的な拡張機能としての自慰行為など、悪意のあるリスクを引き起こします。悪意のある拡張機能を識別する方法には、パブリッシャーのチェック、コメントの読み取り、コードのチェック、およびインストールに注意してください。セキュリティ対策には、セキュリティ認識、良好な習慣、定期的な更新、ウイルス対策ソフトウェアも含まれます。

See all articles