ホームページ > バックエンド開発 > Python チュートリアル > Python でのデータ前処理 (コード)

Python でのデータ前処理 (コード)

不言
リリース: 2019-03-18 10:06:22
転載
8739 人が閲覧しました

この記事は Python でのデータの前処理 (コード) に関する内容です。一定の参考価値があります。困っている友人は参考にしてください。お役に立てれば幸いです。

1. 標準ライブラリのインポート
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
ログイン後にコピー

2. データ セットのインポート#

dataset = pd.read_csv('data (1).csv')  # read_csv:读取csv文件
#创建一个包含所有自变量的矩阵,及因变量的向量
#iloc表示选取数据集的某行某列;逗号之前的表示行,之后的表示列;冒号表示选取全部,没有冒号,则表示选取第几列;values表示选取数据集里的数据。
X = dataset.iloc[:, :-1].values # 选取数据,不选取最后一列。
y = dataset.iloc[:, 3].values # 选取数据,选取每行的第3列数据
ログイン後にコピー

3. 欠落データ

from sklearn.preprocessing import Imputer #进行数据挖掘及数据分析的标准库,Imputer缺失数据的处理
#Imputer中的参数:missing_values 缺失数据,定义怎样辨认确实数据,默认值:nan ;strategy 策略,补缺值方式 : mean-平均值 , median-中值 , most_frequent-出现次数最多的数 ; axis =0取列 =1取行 
imputer = Imputer(missing_values = 'NaN', strategy = 'mean', axis = 0)
imputer = imputer.fit(X[:, 1:3])#拟合fit
X[:, 1:3] = imputer.transform(X[:, 1:3])
ログイン後にコピー

4. 分類されたデータ
from sklearn.preprocessing import LabelEncoder,OneHotEncoder
labelencoder_X=LabelEncoder()
X[:,0]=labelencoder_X.fit_transform(X[:,0])
onehotencoder=OneHotEncoder(categorical_features=[0])
X=onehotencoder.fit_transform(X).toarray()
#因为Purchased是因变量,Python里面的函数可以将其识别为分类数据,所以只需要LabelEncoder转换为分类数字
labelencoder_y=LabelEncoder()
y=labelencoder_y.fit_transform(y)
ログイン後にコピー

5. データ セットをトレーニング セットとテスト セットに分割します

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=0)
#X_train(训练集的字变量),X_test(测试集的字变量),y_train(训练集的因变量),y_test(训练集的因变量)
#训练集所占的比重0.2~0.25,某些情况也可分配1/3的数据给训练集;train_size训练集所占的比重
#random_state决定随机数生成的方式,随机的将数据分配给训练集和测试集;random_state相同时会得到相同的训练集和测试集
ログイン後にコピー

6. 機能scaling
#特征缩放(两种方式:一:Standardisation(标准化);二:Normalisation(正常化))
from sklearn.preprocessing import StandardScaler
sc_X=StandardScaler()
X_train=sc_X.fit_transform(X_train)#拟合,对X_train进行缩放
X_test=sc_X.transform(X_test)#sc_X已经被拟合好了,所以对X_test进行缩放时,直接转换X_test
ログイン後にコピー

7. データ前処理テンプレート

(1) 標準ライブラリをインポート

(2) データ セットをインポート
(3) いくつかの欠落および分類済み項目 遭遇
(4) データ セットをトレーニング セットとテスト セットに分割する
(5) ほとんどの場合、特徴のスケーリングは必要ありませんが、場合によっては特徴のスケーリングが必要になります

以上がPython でのデータ前処理 (コード)の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

関連ラベル:
ソース:cnblogs.com
このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
最新の問題
人気のチュートリアル
詳細>
最新のダウンロード
詳細>
ウェブエフェクト
公式サイト
サイト素材
フロントエンドテンプレート