Pythonはビデオクローリングを実装します
Python は何に使用できますか?同社は主にデータをクロールし、クロールされたデータを分析してマイニングしますが、見たいドラマなどの一部のリソースを自分でクロールするために使用することもできます。この記事では、編集者が動画をクロールするためのコードを共有します。保存して試してみてください。
ストリーミング ファイルをダウンロードするには、リクエスト ライブラリでリクエストされたストリームを True に設定するだけです。ドキュメントはここにあります。
まず試してみるビデオ アドレスを見つけてください:
# -*- coding: utf-8 -*- import requests def download_file(url, path): with requests.get(url, stream=True) as r: chunk_size = 1024 content_size = int(r.headers['content-length']) print '下载开始' with open(path, "wb") as f: for chunk in r.iter_content(chunk_size=chunk_size): f.write(chunk) if __name__ == '__main__': url = '就在原帖...' path = '想存哪都行' download_file(url, path)
打撃に遭遇しました:
AttributeError: __exit__
この文書も嘘をつくことができるのでしょうか?
コンテキストに必要な __exit__ メソッドが実装されていないようです。これは、r が最終的に閉じられて接続プールが解放されることを確認するためなので、contextlib の終了機能を使用します。
# -*- coding: utf-8 -*- import requests from contextlib import closing def download_file(url, path): with closing(requests.get(url, stream=True)) as r: chunk_size = 1024 content_size = int(r.headers['content-length']) print '下载开始' with open(path, "wb") as f: for chunk in r.iter_content(chunk_size=chunk_size): f.write(chunk)
プログラムは正常に実行されますが、私はじっと見つめています。ファイルのサイズが変わらないのはなぜですか? ファイルの完成度はどの程度ですか?ダウンロードしたコンテンツを時間内にハードディスクに保存してメモリを節約したいと考えていますよね?
# -*- coding: utf-8 -*- import requests from contextlib import closing import os def download_file(url, path): with closing(requests.get(url, stream=True)) as r: chunk_size = 1024 content_size = int(r.headers['content-length']) print '下载开始' with open(path, "wb") as f: for chunk in r.iter_content(chunk_size=chunk_size): f.write(chunk) f.flush() os.fsync(f.fileno())
ファイルは目に見える速度で増大しています, 本当に申し訳ありません ハードディスクは最後にハードディスクに書き込む必要があります。プログラムに番号を記録するだけです:
def download_file(url, path): with closing(requests.get(url, stream=True)) as r: chunk_size = 1024 content_size = int(r.headers['content-length']) print '下载开始' with open(path, "wb") as f: n = 1 for chunk in r.iter_content(chunk_size=chunk_size): loaded = n*1024.0/content_size f.write(chunk) print '已下载{0:%}'.format(loaded) n += 1
結果は非常に優れています直感的:
已下载2.579129% 已下载2.581255% 已下载2.583382% 已下载2.585508%
高い理想を持っている私が、これだけで満足できるなんて? クラスを書いて一緒に使ってみましょう:
# -*- coding: utf-8 -*- import requests from contextlib import closing import time def download_file(url, path): with closing(requests.get(url, stream=True)) as r: chunk_size = 1024*10 content_size = int(r.headers['content-length']) print '下载开始' with open(path, "wb") as f: p = ProgressData(size = content_size, unit='Kb', block=chunk_size) for chunk in r.iter_content(chunk_size=chunk_size): f.write(chunk) p.output() class ProgressData(object): def __init__(self, block,size, unit, file_name='', ): self.file_name = file_name self.block = block/1000.0 self.size = size/1000.0 self.unit = unit self.count = 0 self.start = time.time() def output(self): self.end = time.time() self.count += 1 speed = self.block/(self.end-self.start) if (self.end-self.start)>0 else 0 self.start = time.time() loaded = self.count*self.block progress = round(loaded/self.size, 4) if loaded >= self.size: print u'%s下载完成\r\n'%self.file_name else: print u'{0}下载进度{1:.2f}{2}/{3:.2f}{4} 下载速度{5:.2%} {6:.2f}{7}/s'.\ format(self.file_name, loaded, self.unit,\ self.size, self.unit, progress, speed, self.unit) print '%50s'%('/'*int((1-progress)*50))
実行:
下载开始 下载进度10.24Kb/120174.05Kb 0.01% 下载速度4.75Kb/s ///////////////////////////////////////////////// 下载进度20.48Kb/120174.05Kb 0.02% 下载速度32.93Kb/s /////////////////////////////////////////////////
より快適に見えます。
次に行うことは、複数のスレッドを同時にダウンロードすることです。メイン スレッドは URL を生成してキューに入れ、ダウンロード スレッドは URL を取得します:
# -*- coding: utf-8 -*- import requests from contextlib import closing import time import Queue import hashlib import threading import os def download_file(url, path): with closing(requests.get(url, stream=True)) as r: chunk_size = 1024*10 content_size = int(r.headers['content-length']) if os.path.exists(path) and os.path.getsize(path)>=content_size: print '已下载' return print '下载开始' with open(path, "wb") as f: p = ProgressData(size = content_size, unit='Kb', block=chunk_size, file_name=path) for chunk in r.iter_content(chunk_size=chunk_size): f.write(chunk) p.output() class ProgressData(object): def __init__(self, block,size, unit, file_name='', ): self.file_name = file_name self.block = block/1000.0 self.size = size/1000.0 self.unit = unit self.count = 0 self.start = time.time() def output(self): self.end = time.time() self.count += 1 speed = self.block/(self.end-self.start) if (self.end-self.start)>0 else 0 self.start = time.time() loaded = self.count*self.block progress = round(loaded/self.size, 4) if loaded >= self.size: print u'%s下载完成\r\n'%self.file_name else: print u'{0}下载进度{1:.2f}{2}/{3:.2f}{4} {5:.2%} 下载速度{6:.2f}{7}/s'.\ format(self.file_name, loaded, self.unit,\ self.size, self.unit, progress, speed, self.unit) print '%50s'%('/'*int((1-progress)*50)) queue = Queue.Queue() def run(): while True: url = queue.get(timeout=100) if url is None: print u'全下完啦' break h = hashlib.md5() h.update(url) name = h.hexdigest() path = 'e:/download/' + name + '.mp4' download_file(url, path) def get_url(): queue.put(None) if __name__ == '__main__': get_url() for i in xrange(4): t = threading.Thread(target=run) t.daemon = True t.start()
繰り返しダウンロードを追加しました。URL を継続的に生成する方法については、自分で調べて対処できます。
[おすすめコース: Python ビデオ チュートリアル ]
以上がPythonはビデオクローリングを実装しますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

VSコードでは、次の手順を通じて端末でプログラムを実行できます。コードを準備し、統合端子を開き、コードディレクトリが端末作業ディレクトリと一致していることを確認します。プログラミング言語(pythonのpython your_file_name.pyなど)に従って実行コマンドを選択して、それが正常に実行されるかどうかを確認し、エラーを解決します。デバッガーを使用して、デバッグ効率を向上させます。

VSコードはPythonの書き込みに使用でき、Pythonアプリケーションを開発するための理想的なツールになる多くの機能を提供できます。ユーザーは以下を可能にします。Python拡張機能をインストールして、コードの完了、構文の強調表示、デバッグなどの関数を取得できます。デバッガーを使用して、コードを段階的に追跡し、エラーを見つけて修正します。バージョンコントロールのためにGitを統合します。コードフォーマットツールを使用して、コードの一貫性を維持します。糸くずツールを使用して、事前に潜在的な問題を発見します。

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

VSコード拡張機能は、悪意のあるコードの隠れ、脆弱性の活用、合法的な拡張機能としての自慰行為など、悪意のあるリスクを引き起こします。悪意のある拡張機能を識別する方法には、パブリッシャーのチェック、コメントの読み取り、コードのチェック、およびインストールに注意してください。セキュリティ対策には、セキュリティ認識、良好な習慣、定期的な更新、ウイルス対策ソフトウェアも含まれます。

VSコードはWindows 8で実行できますが、エクスペリエンスは大きくない場合があります。まず、システムが最新のパッチに更新されていることを確認してから、システムアーキテクチャに一致するVSコードインストールパッケージをダウンロードして、プロンプトとしてインストールします。インストール後、一部の拡張機能はWindows 8と互換性があり、代替拡張機能を探すか、仮想マシンで新しいWindowsシステムを使用する必要があることに注意してください。必要な拡張機能をインストールして、適切に動作するかどうかを確認します。 Windows 8ではVSコードは実行可能ですが、開発エクスペリエンスとセキュリティを向上させるために、新しいWindowsシステムにアップグレードすることをお勧めします。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。
