なぜHadoopはJavaを使用するのでしょうか?
Hadoop の創設者は、Lucene の創設者である Doug Cutting です。Doug Cutting は 2000 年に Lucene を開発しましたが、これは Java 言語の正式な発表 (1995 年) からわずか 5 年後のことでした。Java 言語が当時どれほど新しいものか想像できるでしょう。そしてカッコいい!
Doug Cutting の自己申告によると、当時のソフトウェア開発の主な目的は、家族を養うためのお金を稼ぐことでした。この頃、Java の多くの新機能は自然と若いエンジニアの支持を集めました。
Doug Cutting は、有名な Java ベースの検索エンジン ライブラリ Apache Lucene の創設者でもあります。 Hadoop はもともと有名なオープンソース検索エンジン Apache Nutch に使用されており、Nutch 自体は Lucene をベースにしており、Lucene のサブプロジェクトでもあります。したがって、Hadoop は Java をベースにしているため、Hadoop は Java で書かれているのは当然です。
Hadoop は Java で書かれているため、Hadoop は Java 言語の書き込みジョブを当然サポートしていますが、実際のアプリケーションでは、Java 以外のサードパーティ ライブラリの使用やその他の理由により、C/C などのMapReduce ジョブを記述するための言語。現時点では、Hadoop が提供するいくつかのツールを使用する必要がある場合があります。
C/C で MpaReduce ジョブを作成する場合、使用できるツールには Hadoop Streaming または Hadoop Pipes が含まれます。
MapReduce ジョブを Python で作成する場合は、Hadoop ストリーミングまたは Pydoop を使用できます。
シェル、php、ruby などの他の言語を使用したい場合は、Hadoop ストリーミングを使用できます。
JVM/JDK 開発者がヘルプをリクエストしている場合
本番環境の JVM/JDK テストを行っている人は、Hadoop をコンパイルして実行することを強くお勧めします。
これにより、素晴らしいパフォーマンスとストレス テストが実現します。 Hadoop は重要なバックエンド データセンター アプリケーションになりつつあるため、適切な Hadoop サポートが重要です。
以上がなぜHadoopはJavaを使用するのでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









Java エラー: Hadoop エラー、対処方法と回避方法 Hadoop を使用してビッグ データを処理する場合、タスクの実行に影響を与え、データ処理の失敗を引き起こす可能性のある Java 例外エラーが頻繁に発生します。この記事では、一般的な Hadoop エラーをいくつか紹介し、それらに対処および回避する方法を示します。 Java.lang.OutOfMemoryErrorOutOfMemoryError は、Java 仮想マシンのメモリ不足によって発生するエラーです。 Hadoop の場合

ビッグデータ時代の到来に伴い、データの処理と保存の重要性がますます高まっており、大量のデータをいかに効率的に管理、分析するかが企業にとっての課題となっています。 Apache Foundation の 2 つのプロジェクトである Hadoop と HBase は、ビッグ データのストレージと分析のためのソリューションを提供します。この記事では、ビッグデータのストレージとクエリのために Beego で Hadoop と HBase を使用する方法を紹介します。 1. Hadoop と HBase の概要 Hadoop は、オープンソースの分散ストレージおよびコンピューティング システムです。

データ量が増加し続けるにつれて、従来のデータ処理方法ではビッグデータ時代がもたらす課題に対処できなくなります。 Hadoop は、ビッグ データ処理において単一ノード サーバーによって引き起こされるパフォーマンスのボトルネック問題を、分散ストレージと大量のデータの処理を通じて解決する、オープン ソースの分散コンピューティング フレームワークです。 PHP は、Web 開発で広く使用されているスクリプト言語であり、迅速な開発と容易なメンテナンスという利点があります。この記事では、ビッグデータ処理に PHP と Hadoop を使用する方法を紹介します。 HadoopとはHadoopとは

Java ビッグ データ テクノロジ スタック: Hadoop、Spark、Kafka などのビッグ データ分野における Java のアプリケーションを理解します。データ量が増加し続けるにつれて、今日のインターネット時代ではビッグ データ テクノロジが注目のトピックになっています。ビッグデータの分野では、Hadoop、Spark、Kafka などのテクノロジーの名前をよく耳にします。これらのテクノロジーは重要な役割を果たしており、広く使用されているプログラミング言語である Java もビッグデータの分野で大きな役割を果たしています。この記事では、Java のアプリケーション全般に焦点を当てます。

1: JDK1のインストール 以下のコマンドを実行して、JDK1.8のインストールパッケージをダウンロードします。 wget--no-check-certificatehttps://repo.huaweicloud.com/java/jdk/8u151-b12/jdk-8u151-linux-x64.tar.gz2. 次のコマンドを実行して、ダウンロードした JDK1.8 インストール パッケージを解凍します。 。 tar-zxvfjdk-8u151-linux-x64.tar.gz3. JDK パッケージを移動して名前を変更します。 mvjdk1.8.0_151//usr/java84. Java 環境変数を設定します。エコー'

データ量が増加し続けるにつれ、大規模なデータ処理が企業が直面し、解決しなければならない問題となっています。従来のリレーショナル データベースではもはやこの需要を満たすことができず、大規模データの保存と分析には、Hadoop、Spark、Flink などの分散コンピューティング プラットフォームが最適な選択肢となっています。データ処理ツールの選択プロセスでは、開発と保守が簡単な言語として、PHP が開発者の間でますます人気が高まっています。この記事では、大規模なデータ処理に PHP を活用する方法とその方法について説明します。

現在のインターネット時代において、大量のデータの処理は、あらゆる企業や機関が直面する必要がある問題です。 PHP は広く使用されているプログラミング言語であるため、データ処理の面でも時代に対応する必要があります。大量のデータをより効率的に処理するために、PHP 開発には Spark や Hadoop などのビッグ データ処理ツールが導入されています。 Spark は、大規模なデータ セットの分散処理に使用できるオープン ソース データ処理エンジンです。 Spark の最大の特徴は、高速なデータ処理速度と効率的なデータ ストレージです。

Redis と Hadoop はどちらも一般的に使用される分散データ ストレージおよび処理システムです。ただし、デザイン、パフォーマンス、使用シナリオなどの点で、この 2 つには明らかな違いがあります。この記事では、Redis と Hadoop の違いを詳細に比較し、適用可能なシナリオを検討します。 Redis の概要 Redis は、複数のデータ構造と効率的な読み取りおよび書き込み操作をサポートするオープンソースのメモリベースのデータ ストレージ システムです。 Redis の主な機能は次のとおりです。 メモリ ストレージ: Redis
