バイナリ ツリー トラバーサル アルゴリズム
A. バイナリ ツリー トラバーサル
1. バイナリ ツリーの事前順序トラバーサル:
(1) バイナリ ツリーが空の場合、それは何も行わず、空を返します。
(2) ルート ノードにアクセスします。
(3) 左側のサブツリーの事前順序走査。
(4) Preorder は、右のサブツリーをトラバースします。
a. バイナリ ツリーの事前順序走査のための再帰的アルゴリズム:
void PreOrderTraverse(BiTree BT) { if(BT) { printf("%c",BT->data); //访问根结点 PreOrderTraverse(BT->lchild); //前序遍历左子树 PreOrderTraverse(BT->rchild); //前序遍历右子树 } }
b. スタックを使用して各ノードの正しいサブツリーを保存するバイナリ ツリー事前順序トラバーサルの非再帰アルゴリズム:
( 1) ツリーが空の場合、ポインタ p はルート ノードを指します。p は現在のノード ポインタです。
(2) まず現在のノード p にアクセスし、p をスタック S にプッシュします。
(3) p がその左の子を指すようにします。
(4) p が空になるまで手順 (2) と (3) を繰り返します。
(5) スタック S から最上位の要素をポップし、p をこの要素の右側の子にポイントします。
(6) p が空になり、スタック S も空になるまで、手順 (2) ~ (5) を繰り返します。
(7) トラバースが終了します。
スタックの事前順序走査を使用する非再帰アルゴリズム:
void PreOrderNoRec(BiTree BT) { stack S; BiTree p=BT->root; while((NULL!=p)||!StackEmpty(S)) { if(NULL!=p) { printf("%c",p->data); Push(S,p); p=p->lchild; } else { p=Top(S); Pop(S); p=p->rchild; } } }
c. バイナリ リンク リストを使用するstorage バイナリ ツリーの事前順序走査のための非再帰アルゴリズム:
void PreOrder(pBinTreeNode pbnode) { pBinTreeNode stack[100]; pBinTreeNode p; int top; top=0; p=pbnode; do { while(p!=NULL) { printf("%d\n",p->data); //访问结点p top=top+1; stack[top]=p; p=p->llink; //继续搜索结点p的左子树 } if(top!=0) { p=stack[top]; top=top-1; p=p->rlink; //继续搜索结点p的右子树 } }while((top!=0)||(p!=NULL)); }
2. バイナリ ツリーの順序どおりの走査:
( 1) バイナリ ツリーが空の場合、それは何も行わず、何も返しません。(2) 左側のサブツリーを順番に走査します。
(3) ルート ノードにアクセスします。
(4) 右側のサブツリーを順番に走査します。
void InOrderTraverse(BiTree BT) { if(BT) { InOrderTraverse(BT->lchild); //中序遍历左子树 printf("%c",BT->data); //访问根结点 InOrderTraverse(BT->rchild); //中序遍历右子树 } }
b. スタック ストレージを使用したバイナリ ツリーの順序トラバーサルのための非再帰アルゴリズム:
(2) p をスタック S にプッシュし、p がその左の子を指すようにします。
(3) p が空になるまで手順 (2) を繰り返します。
(4) スタック S から最上位の要素をポップし、p がこの要素を指すようにします。
(5) 現在のノード p にアクセスし、p をその右側の子にポイントします。
(6) p が空になり、スタック S も空になるまで、手順 (2) ~ (5) を繰り返します。
(7) トラバースが終了します。
スタックの順序トラバーサルを使用した非再帰アルゴリズム:
void IneOrderNoRec(BiTree BT) { stack S; BiTree p=BT->root; while((NULL!=p)||!StackEmpty(S)) { if(NULL!=p) { Push(S,p); p=p->lchild; } else { p=Top(S); Pop(S); printf("%c",p->data); p=p->rchild; } } }
c. 次を使用します。バイナリ フォーク リンク リストに格納されたバイナリ ツリーを順番に走査するための非再帰アルゴリズム:
void InOrder(pBinTreeNode pbnode) { pBinTreeNode stack[100]; pBinTreeNode p; int top; top=0; p=pbnode; do { while(p!=NULL) { top=top+1; stack[top]=p; //结点p进栈 p=p->llink; //继续搜索结点p的左子树 } if(top!=0) { p=stack[top]; //结点p出栈 top=top-1; printf("%d\n",p->data); //访问结点p p=p->rlink; //继续搜索结点p的右子树 } }while((top!=0)||(p!=NULL)); }
3. 事後走査バイナリ ツリー:
(2) 左側のサブツリーの事後走査。
(3) 右サブツリーの事後走査。
(4) ルート ノードにアクセスします。
void PostOrderTraverse(BiTree BT) { if(BT) { PostOrderTraverse(BT->lchild); //后序遍历左子树 PostOrderTraverse(BT->rchild); //后序遍历右子树 printf("%c",BT->data); //访问根结点 } }
b.使用栈存储的二叉树后序遍历的非递归算法:
算法思想:首先扫描根结点的所有左结点并入栈,然后出栈一个结点,扫描该结点的右结点并入栈,再扫描该右结点的所有左结点并入栈,当一个结点的左、右子树均被访问后再访问该结点。因为在递归算法中,左子树和右子树都进行了返回,因此为了区分这两种情况,还需要设置一个标识栈tag,当tag的栈顶元素为0时表示从左子树返回,为1表示从右子树返回。
(1)当树为空时,将指针p指向根结点,p为当前结点指针。
(2)将p压入栈S中,0压入栈tag中,并令p指向其左孩子。
(3)重复执行步骤(2),直到p为空。
(4)如果tag栈中的栈顶元素为1,跳至步骤(6)。
(5)如果tag栈中的栈顶元素为0,跳至步骤(7)。
(6)将栈S的栈顶元素弹出,并访问此结点,跳至步骤(8)。
(7)将p指向栈S的栈顶元素的右孩子。
(8)重复执行步骤(2)~(7),直到p为空并且栈S也为空。
(9)遍历结束。
使用栈的后序遍历非递归算法:
void PostOrderNoRec(BiTree BT) { stack S; stack tag; BiTree p=BT->root; while((NULL!=p)||!StackEmpty(S)) { while(NULL!=p) { Push(S,p); Push(tag,0); p=p->lchild; } if(!StackEmpty(S)) { if(Pop(tag)==1) { p=Top(S); Pop(S); printf("%c",p->data); Pop(tag); //栈tag要与栈S同步 } else { p=Top(S); if(!StackEmpty(S)) { p=p->rchild; Pop(tag); Push(tag,1); } } } } }
c.使用二叉链表存储的二叉树后序遍历非递归算法:
void PosOrder(pBinTreeNode pbnode) { pBinTreeNode stack[100]; //结点的指针栈 int count[100]; //记录结点进栈次数的数组 pBinTreeNode p; int top; top=0; p=pbnode; do { while(p!=NULL) { top=top+1; stack[top]=p; //结点p首次进栈 count[top]=0; p=p->llink; //继续搜索结点p的左子树 } p=stack[top]; //结点p出栈 top=top-1; if(count[top+1]==0) { top=top+1; stack[top]=p; //结点p首次进栈 count[top]=1; p=p->rlink; //继续搜索结点p的右子树 } else { printf("%d\n",p->data); //访问结点p p=NULL; } }while((top>0)); }
B 线索化二叉树:

typedef struct node { DataType data; struct node *lchild, *rchild; //左、右孩子指针 int ltag, rtag; //左、右线索 }TBinTNode; //结点类型 typedef TBinTNode *TBinTree;

(1)中序线索化二叉树的算法:
void InOrderThreading(TBinTree p) { if(p) { InOrderThreading(p->lchild); //左子树线索化 if(p->lchild) p->ltag=0; else p->ltag=1; if(p->rchild) p->rtag=0; else p->rtag=1; if(*(pre)) //若*p的前驱*pre存在 { if(pre->rtag==1) pre->rchild=p; if(p->ltag==1) p->lchild=pre; } pre=p; //另pre是下一访问结点的中序前驱 InOrderThreading(p->rchild); //右子树线索化 } }
(2)在中序线索化二叉树下,结点p的后继结点有以下两种情况:
①结点p的右子树为空,那么p的右孩子指针域为右线索,直接指向结点p的后继结点。②结点p的右子树不为空,那么根据中序遍历算法,p的后继必是其右子树中第1个遍历到的结点。
TBinTNode *InOrderSuc(BiThrTree p) { TBinTNode *q; if(p->rtag==1) //第①情况 return p->rchild; else //第②情况 { q=p->rchild; while(q->ltag==0) q=q->lchild; return q; } }
中序线索化二叉树求前驱结点的算法:
TBinTNode *InOrderPre(BiThrTree p) { TBinTNode *q; if(p->ltag==1) return p->lchild; else { q=p->lchild; //从*p的左孩子开始查找 while(q->rtag==0) q=q->rchild; return q; } }
(3)遍历中序线索化二叉树的算法
void TraversInOrderThrTree(BiThrTree p) { if(p) { while(p->ltag==0) p=p->lchild; while(p) { printf("%c",p->data); p=InOrderSuc(p); } } }
一般的な問題に関連する技術的な記事については、FAQ 列にアクセスして学習してください。
以上がバイナリ ツリー トラバーサル アルゴリズムの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









上記および筆者の個人的な理解: 現在、自動運転システム全体において、認識モジュールが重要な役割を果たしている。道路を走行する自動運転車は、認識モジュールを通じてのみ正確な認識結果を得ることができる。下流の規制および制御モジュール自動運転システムでは、タイムリーかつ正確な判断と行動決定が行われます。現在、自動運転機能を備えた自動車には通常、サラウンドビューカメラセンサー、ライダーセンサー、ミリ波レーダーセンサーなどのさまざまなデータ情報センサーが搭載されており、さまざまなモダリティで情報を収集して正確な認識タスクを実現しています。純粋な視覚に基づく BEV 認識アルゴリズムは、ハードウェア コストが低く導入が容易であるため、業界で好まれており、その出力結果はさまざまな下流タスクに簡単に適用できます。

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

C++sort 関数の最下層はマージ ソートを使用し、その複雑さは O(nlogn) で、クイック ソート、ヒープ ソート、安定したソートなど、さまざまなソート アルゴリズムの選択肢を提供します。

人工知能 (AI) と法執行機関の融合により、犯罪の予防と検出の新たな可能性が開かれます。人工知能の予測機能は、犯罪行為を予測するためにCrimeGPT (犯罪予測技術) などのシステムで広く使用されています。この記事では、犯罪予測における人工知能の可能性、その現在の応用、人工知能が直面する課題、およびこの技術の倫理的影響について考察します。人工知能と犯罪予測: 基本 CrimeGPT は、機械学習アルゴリズムを使用して大規模なデータセットを分析し、犯罪がいつどこで発生する可能性があるかを予測できるパターンを特定します。これらのデータセットには、過去の犯罪統計、人口統計情報、経済指標、気象パターンなどが含まれます。人間のアナリストが見逃す可能性のある傾向を特定することで、人工知能は法執行機関に力を与えることができます

01 今後の概要 現時点では、検出効率と検出結果の適切なバランスを実現することが困難です。我々は、光学リモートセンシング画像におけるターゲット検出ネットワークの効果を向上させるために、多層特徴ピラミッド、マルチ検出ヘッド戦略、およびハイブリッドアテンションモジュールを使用して、高解像度光学リモートセンシング画像におけるターゲット検出のための強化されたYOLOv5アルゴリズムを開発しました。 SIMD データセットによると、新しいアルゴリズムの mAP は YOLOv5 より 2.2%、YOLOX より 8.48% 優れており、検出結果と速度のバランスがより優れています。 02 背景と動機 リモート センシング技術の急速な発展に伴い、航空機、自動車、建物など、地表上の多くの物体を記述するために高解像度の光学式リモート センシング画像が使用されています。リモートセンシング画像の判読における物体検出

Java は、強力なファイル処理機能を備えた人気のあるプログラミング言語です。 Java では、フォルダーを走査してすべてのファイル名を取得するのが一般的な操作であり、これは特定のディレクトリー内のファイルを迅速に見つけて処理するのに役立ちます。この記事では、Java でフォルダーを走査してすべてのファイル名を取得するメソッドを実装する方法と、具体的なコード例を紹介します。 1. 再帰的メソッドを使用してフォルダーを走査する 再帰的メソッドを使用してフォルダーを走査することができます。再帰的メソッドはそれ自体を呼び出す方法であり、フォルダーを効果的に走査できます。

1. 58 Portraits プラットフォーム構築の背景 まず、58 Portraits プラットフォーム構築の背景についてお話ししたいと思います。 1. 従来のプロファイリング プラットフォームの従来の考え方ではもはや十分ではありません。ユーザー プロファイリング プラットフォームを構築するには、複数のビジネス分野からのデータを統合して、ユーザーの行動や関心を理解するためのデータ マイニングも必要です。最後に、ユーザー プロファイル データを効率的に保存、クエリ、共有し、プロファイル サービスを提供するためのデータ プラットフォーム機能も必要です。自社構築のビジネス プロファイリング プラットフォームとミドルオフィス プロファイリング プラットフォームの主な違いは、自社構築のプロファイリング プラットフォームは単一のビジネス ラインにサービスを提供し、オンデマンドでカスタマイズできることです。ミッドオフィス プラットフォームは複数のビジネス ラインにサービスを提供し、複雑な機能を備えていることです。モデリングを提供し、より一般的な機能を提供します。 2.58 中間プラットフォームのポートレート構築の背景のユーザーのポートレート 58

上記と著者の個人的な理解は、自動運転システムにおいて、認識タスクは自動運転システム全体の重要な要素であるということです。認識タスクの主な目的は、自動運転車が道路を走行する車両、路側の歩行者、運転中に遭遇する障害物、道路上の交通標識などの周囲の環境要素を理解して認識できるようにすることで、それによって下流のシステムを支援できるようにすることです。モジュール 正しく合理的な決定と行動を行います。自動運転機能を備えた車両には、通常、サラウンドビューカメラセンサー、ライダーセンサー、ミリ波レーダーセンサーなど、さまざまな種類の情報収集センサーが装備されており、自動運転車が正確に認識し、認識できるようにします。周囲の環境要素を理解することで、自動運転車が自動運転中に正しい判断を下せるようになります。頭