Python ではどのような科学計算ができるのでしょうか?
科学計算用 Python の機能:
1. 科学ライブラリは非常に充実しています。 (推奨される学習: Python ビデオ チュートリアル )
科学ライブラリ: numpy、scipy。プロット: matplotlib.パラレル: mpi4py。デバッグ: pdb。
2. 高効率。
numpy (配列機能、f2py) をしっかり学ぶことができれば、コードの実行効率は fortran や C よりもそれほど悪くありません。しかし、配列をうまく利用しないと、作成したプログラムの効率が悪くなってしまいます。したがって、開始したら、必ず十分な時間をかけて numpy の配列クラスを理解してください。
3. デバッグが簡単。
pdb は、私がこれまで見た中で最高のデバッグ ツールです。プログラムのブレークポイントで直接断面を表示できますが、これはテキスト解釈型言語のみが行うことができます。 Python でプログラムを開発するのにかかる時間は 10 分の 1 であると言っても過言ではありません。
4. その他。
これは豊富で統合されており、C ライブラリ (さまざまな Linux ディストリビューションなど) ほど複雑ではありません。Python で numpy をしっかり学習すれば、科学技術計算を行うことができます。 Python のサードパーティ ライブラリは包括的ですが、複雑ではありません。 Python のクラスベースの言語機能により、Fortran などよりも大規模な開発が容易になります。
数値解析において、ルンゲ・クッタ法は、非線形常微分方程式を解くための陰的または陽的反復計算法の重要なタイプです。これらの手法は、1900 年頃に数学者のカール ルンゲとマルティン ヴィルヘルム クッタによって発明されました。
ルンゲ・クッタ法は、微分方程式の数値解法に使用される有名なオイラー法など、工学分野で広く使用されている高精度のシングルステップ アルゴリズムです。このアルゴリズムは精度が高く、エラーを抑える工夫が施されているため、実装原理も比較的複雑です。
ガウス積分は、確率論や連続フーリエ変換の統合などの計算で広く使用されています。これは誤差関数の定義にも現れます。誤差関数には初等関数はありませんが、ガウス積分は微積分によって解析的に解くことができます。ガウス積分は確率積分とも呼ばれ、ガウス関数の積分です。ドイツの数学者で物理学者のカール・フリードリヒ・ガウスにちなんで命名されました。
ローレンツ アトラクター とそこから導出された方程式系は、1963 年にエドワード ノートン ローレンツによって発表され、もともとは大気科学ジャーナルに掲載されました。論文「決定論的非周期流れ」で提案されました。これは、大気方程式に現れる対流体積方程式から簡略化されたものです。
このローレンツ モデルは、非線形数学にとって重要であるだけでなく、気候や天気予報にも重要な意味を持ちます。惑星や恒星の大気は、完全に決定論的ではあるものの、モデルによって明確に表現される、突然の一見ランダムな変化を起こす傾向にあるさまざまな準周期状態を示す可能性があります。
Python 関連の技術記事の詳細については、Python チュートリアル 列にアクセスして学習してください。
以上がPython ではどのような科学計算ができるのでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











PHPは主に手順プログラミングですが、オブジェクト指向プログラミング(OOP)もサポートしています。 Pythonは、OOP、機能、手続き上のプログラミングなど、さまざまなパラダイムをサポートしています。 PHPはWeb開発に適しており、Pythonはデータ分析や機械学習などのさまざまなアプリケーションに適しています。

Pythonは、スムーズな学習曲線と簡潔な構文を備えた初心者により適しています。 JavaScriptは、急な学習曲線と柔軟な構文を備えたフロントエンド開発に適しています。 1。Python構文は直感的で、データサイエンスやバックエンド開発に適しています。 2。JavaScriptは柔軟で、フロントエンドおよびサーバー側のプログラミングで広く使用されています。

PHPはWeb開発と迅速なプロトタイピングに適しており、Pythonはデータサイエンスと機械学習に適しています。 1.PHPは、単純な構文と迅速な開発に適した動的なWeb開発に使用されます。 2。Pythonには簡潔な構文があり、複数のフィールドに適しており、強力なライブラリエコシステムがあります。

VSコードはWindows 8で実行できますが、エクスペリエンスは大きくない場合があります。まず、システムが最新のパッチに更新されていることを確認してから、システムアーキテクチャに一致するVSコードインストールパッケージをダウンロードして、プロンプトとしてインストールします。インストール後、一部の拡張機能はWindows 8と互換性があり、代替拡張機能を探すか、仮想マシンで新しいWindowsシステムを使用する必要があることに注意してください。必要な拡張機能をインストールして、適切に動作するかどうかを確認します。 Windows 8ではVSコードは実行可能ですが、開発エクスペリエンスとセキュリティを向上させるために、新しいWindowsシステムにアップグレードすることをお勧めします。

VSコードはPythonの書き込みに使用でき、Pythonアプリケーションを開発するための理想的なツールになる多くの機能を提供できます。ユーザーは以下を可能にします。Python拡張機能をインストールして、コードの完了、構文の強調表示、デバッグなどの関数を取得できます。デバッガーを使用して、コードを段階的に追跡し、エラーを見つけて修正します。バージョンコントロールのためにGitを統合します。コードフォーマットツールを使用して、コードの一貫性を維持します。糸くずツールを使用して、事前に潜在的な問題を発見します。

PHPは1994年に発信され、Rasmuslerdorfによって開発されました。もともとはウェブサイトの訪問者を追跡するために使用され、サーバー側のスクリプト言語に徐々に進化し、Web開発で広く使用されていました。 Pythonは、1980年代後半にGuidovan Rossumによって開発され、1991年に最初にリリースされました。コードの読みやすさとシンプルさを強調し、科学的コンピューティング、データ分析、その他の分野に適しています。

VSコードでは、次の手順を通じて端末でプログラムを実行できます。コードを準備し、統合端子を開き、コードディレクトリが端末作業ディレクトリと一致していることを確認します。プログラミング言語(pythonのpython your_file_name.pyなど)に従って実行コマンドを選択して、それが正常に実行されるかどうかを確認し、エラーを解決します。デバッガーを使用して、デバッグ効率を向上させます。

VSコード拡張機能は、悪意のあるコードの隠れ、脆弱性の活用、合法的な拡張機能としての自慰行為など、悪意のあるリスクを引き起こします。悪意のある拡張機能を識別する方法には、パブリッシャーのチェック、コメントの読み取り、コードのチェック、およびインストールに注意してください。セキュリティ対策には、セキュリティ認識、良好な習慣、定期的な更新、ウイルス対策ソフトウェアも含まれます。
