#1. ジェネリックの概念の導入 (ジェネリックが必要な理由)? (推奨: java ビデオ チュートリアル )
まず、次の短いコードを見てみましょう:
public class GenericTest { public static void main(String[] args) { List list = new ArrayList(); list.add("qqyumidi"); list.add("corn"); list.add(100); for (int i = 0; i < list.size(); i++) { String name = (String) list.get(i); // 1 System.out.println("name:" + name); } } }
は List 型のコレクションを定義します。2 つの値String 型の値が追加され、その後に Integer 型の値が続きます。リストのデフォルトのタイプはオブジェクトであるため、これは完全に許可されます。
後続のループでは、整数型の値を事前にリストに追加するのを忘れたり、その他のエンコードの理由により、//1 と同様のエラーが発生しやすくなります。コンパイル段階は正常ですが、実行時に「java.lang.ClassCastException」例外が発生するためです。したがって、このようなエラーはコーディング中に検出することが困難です。
上記のコーディング プロセス中に、2 つの主な問題があることがわかりました:
1. オブジェクトをコレクションに入れると、コレクションはオブジェクトの型を記憶しません。このオブジェクトが再びコレクションから取り出されると、オブジェクトのコンパイル済み型は Object 型に変わりますが、その実行時型は独自の型のままです。
2. そのため、//1のコレクション要素を取り出す際には、特定の対象型への人為的な強制型変換が必要となり、「java.lang.ClassCastException」例外が発生しやすくなります。
それでは、コレクション内の要素の型をコレクションが記憶できるようにし、コンパイル中に問題がない限り「java.lang.ClassCastException」例外が発生するという目標を達成する方法はありますか?実行時に発生しませんか?答えはジェネリック医薬品を使用することです。
2. ジェネリックとは何ですか?
ジェネリック、つまり「パラメータ化された型」。 パラメータに関して言えば、最もよく知られているのは、メソッドを定義するときに仮パラメータがあり、このメソッドを呼び出すときに実際のパラメータが渡されることです。
それでは、パラメータ化された型をどのように理解すればよいでしょうか?名前が示すように、型はメソッドの変数パラメータと同様に、元の特定の型からパラメータ化されますが、このとき、型もパラメータの形式で定義されます (これを型パラメータと呼ぶこともできます)。次に、型 (型引数) を使用または呼び出すときに、特定の型が渡されます。
少し複雑に思えますが、まず、一般的な記述を使用して上記の例を見てみましょう。
public class GenericTest { public static void main(String[] args) { /* List list = new ArrayList(); list.add("qqyumidi"); list.add("corn"); list.add(100); */ List<String> list = new ArrayList<String>(); list.add("qqyumidi"); list.add("corn"); //list.add(100); // 1 提示编译错误 for (int i = 0; i < list.size(); i++) { String name = list.get(i); // 2 System.out.println("name:" + name); } } }
汎用的な書き込み方法を採用した後、//1 に Integer 型オブジェクトを追加しようとするとコンパイル エラーが発生します。List
上記の一般的な定義と組み合わせると、List
public interface List<E> extends Collection<E> { int size(); boolean isEmpty(); boolean contains(Object o); Iterator<E> iterator(); Object[] toArray(); <T> T[] toArray(T[] a); boolean add(E e); boolean remove(Object o); boolean containsAll(Collection<?> c); boolean addAll(Collection<? extends E> c); boolean addAll(int index, Collection<? extends E> c); boolean removeAll(Collection<?> c); boolean retainAll(Collection<?> c); void clear(); boolean equals(Object o); int hashCode(); E get(int index); E set(int index, E element); void add(int index, E element); E remove(int index); int indexOf(Object o); int lastIndexOf(Object o); ListIterator<E> listIterator(); ListIterator<E> listIterator(int index); List<E> subList(int fromIndex, int toIndex); }
List インターフェイスで一般的な定義を採用した後、
当然ながら、ArrayList は List インターフェイスの実装クラスであり、その定義形式は次のとおりです。
public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable { public boolean add(E e) { ensureCapacityInternal(size + 1); // Increments modCount!! elementData[size++] = e; return true; } public E get(int index) { rangeCheck(index); checkForComodification(); return ArrayList.this.elementData(offset + index); } //...省略掉其他具体的定义过程 }
これにより、ソース コードの観点から、なぜ追加時にコンパイル エラーが発生するのかがわかります。 //1 の整数型オブジェクト、 //2 の get() で取得した型はそのまま String 型です。
3. カスタマイズされたジェネリック インターフェイス、ジェネリック クラス、およびジェネリック メソッド
上記の内容から、ジェネリックの具体的な操作プロセスを誰もが理解できました。また、インターフェイス、クラス、メソッドもジェネリックスを使用して定義し、それに応じて使用できることもわかっています。はい、具体的な用途では、ジェネリック インターフェイス、ジェネリック クラス、ジェネリック メソッドに分けることができます。
カスタマイズされたジェネリック インターフェイス、ジェネリック クラス、およびジェネリック メソッドは、上記の Java ソース コードの List および ArrayList に似ています。以下に、ジェネリック クラスとジェネリック メソッドの最も単純な定義を見ていきます。
public class GenericTest { public static void main(String[] args) { Box<String> name = new Box<String>("corn"); System.out.println("name:" + name.getData()); } } class Box<T> { private T data; public Box() { } public Box(T data) { this.data = data; } public T getData() { return data; } }
ジェネリック インターフェイス、ジェネリック クラス、およびジェネリック メソッドの定義プロセスでは、同じものの T、E、K、V パラメータがよく見られます。フォームは、外部使用から渡される型引数を受け取るため、ジェネリック パラメーターを表すためによく使用されます。それでは、渡されたさまざまな型の引数に対して、生成される対応するオブジェクト インスタンスの型は同じなのでしょうか?
public class GenericTest { public static void main(String[] args) { Box<String> name = new Box<String>("corn"); Box<Integer> age = new Box<Integer>(712); System.out.println("name class:" + name.getClass()); // com.qqyumidi.Box System.out.println("age class:" + age.getClass()); // com.qqyumidi.Box System.out.println(name.getClass() == age.getClass()); // true } }
このことから、ジェネリック クラスを使用する場合、異なるジェネリック引数が渡されても、実際には異なる型が生成されないことがわかりました。メモリ内にはジェネリック クラスが 1 つだけあり、これが元の最も基本的な型 (この例ではボックス) もちろん、論理的には、これを複数の異なるジェネリック型として理解できます。
その理由は、Java におけるジェネリックの概念の目的は、コードのコンパイル段階にのみ影響することであるためです。コンパイル プロセス中、ジェネリックの結果が正しく検証された後、ジェネリックは関連情報が消去されます。つまり、正常にコンパイルされたクラス ファイルには一般的な情報が含まれていません。一般的な情報は実行時段階には入りません。
对此总结成一句话:泛型类型在逻辑上看以看成是多个不同的类型,实际上都是相同的基本类型。
四.类型通配符
接着上面的结论,我们知道,Box
为了弄清这个问题,我们继续看下下面这个例子:
public class GenericTest { public static void main(String[] args) { Box<Number> name = new Box<Number>(99); Box<Integer> age = new Box<Integer>(712); getData(name); //The method getData(Box<Number>) in the type GenericTest is //not applicable for the arguments (Box<Integer>) getData(age); // 1 } public static void getData(Box<Number> data){ System.out.println("data :" + data.getData()); } }
我们发现,在代码//1处出现了错误提示信息:The method getData(Box
public class GenericTest { public static void main(String[] args) { Box<Integer> a = new Box<Integer>(712); Box<Number> b = a; // 1 Box<Float> f = new Box<Float>(3.14f); b.setData(f); // 2 } public static void getData(Box<Number> data) { System.out.println("data :" + data.getData()); } } class Box<T> { private T data; public Box() { } public Box(T data) { setData(data); } public T getData() { return data; } public void setData(T data) { this.data = data; } }
这个例子中,显然//1和//2处肯定会出现错误提示的。在此我们可以使用反证法来进行说明。
假设Box
好,那我们回过头来继续看“类型通配符”中的第一个例子,我们知道其具体的错误提示的深层次原因了。那么如何解决呢?总部能再定义一个新的函数吧。
这和Java中的多态理念显然是违背的,因此,我们需要一个在逻辑上可以用来表示同时是Box
类型通配符一般是使用 ? 代替具体的类型实参。注意了,此处是类型实参,而不是类型形参!且Box>在逻辑上是Box
public class GenericTest { public static void main(String[] args) { Box<String> name = new Box<String>("corn"); Box<Integer> age = new Box<Integer>(712); Box<Number> number = new Box<Number>(314); getData(name); getData(age); getData(number); } public static void getData(Box<?> data) { System.out.println("data :" + data.getData()); } }
有时候,我们还可能听到类型通配符上限和类型通配符下限。具体有是怎么样的呢?
在上面的例子中,如果需要定义一个功能类似于getData()的方法,但对类型实参又有进一步的限制:只能是Number类及其子类。此时,需要用到类型通配符上限。
public class GenericTest { public static void main(String[] args) { Box<String> name = new Box<String>("corn"); Box<Integer> age = new Box<Integer>(712); Box<Number> number = new Box<Number>(314); getData(name); getData(age); getData(number); //getUpperNumberData(name); // 1 getUpperNumberData(age); // 2 getUpperNumberData(number); // 3 } public static void getData(Box<?> data) { System.out.println("data :" + data.getData()); } public static void getUpperNumberData(Box<? extends Number> data){ System.out.println("data :" + data.getData()); } }
此时,显然,在代码//1处调用将出现错误提示,而//2 //3处调用正常。
类型通配符上限通过形如Box extends Number>形式定义,相对应的,类型通配符下限为Box super Number>形式,其含义与类型通配符上限正好相反,在此不作过多阐述了。
更多java知识请关注java基础教程栏目。
以上がJava ジェネリックの詳細な紹介の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。