golang がビッグデータを処理する方法
Golang は同時プログラミングに非常に適していることが証明されており、Goroutine は非同期プログラミングよりも読みやすく、エレガントで効率的です。この記事では、大量のデータのバッチ処理(ETL)に適した、Golangによる実装に適したパイプライン実行モデルを提案します。
次のようなアプリケーション シナリオを想像しました。 (推奨学習: Go )
## データベース A (Cassandra) からユーザー レビューをロードします (大量の、たとえば、たとえば 10 億)、各コメントのユーザー ID に基づいてデータベース B (MySQL) からユーザー情報を関連付け、NLP サービス (自然言語処理) を呼び出して各コメントを処理し、処理結果をデータベース C (ElasticSearch) に書き込みます。 アプリケーションではさまざまな問題が発生するため、これらの要件を要約します。要件 1: データはバッチで処理する必要があります。たとえば、バッチごとに 100 項目を指定します。問題 (データベース障害など) が発生すると中断され、次回プログラムを開始するときに中断から再開するためにチェックポイントが使用されます。
要件 2: データベースと NLP サービスに適切な負荷がかかるように、プロセスごとに適切な同時実行数を設定します (他のビジネスに影響を与えず、ETL パフォーマンスを向上させるためにできるだけ多くのリソースを占有します)。たとえば、手順 (1) ~ (4) では、同時実行数をそれぞれ 1、4、8、および 2 に設定します。
再利用可能なパイプライン モジュール
ETL 作業をより効率的に完了するために、パイプラインをモジュールに抽象化しました。まずコードを貼り付けてから、意味を分析します。このモジュールは直接使用でき、主に使用されるインターフェイスは NewPipeline、Async、Wait です。 このパイプライン コンポーネントを使用すると、ETL プログラムはシンプル、効率的、信頼性の高いものになり、プログラマは面倒な同時プロセス制御から解放されます:package main import "log" func main() { //恢复上次执行的checkpoint,如果是第一次执行就获取一个初始值。 checkpoint := loadCheckpoint() //工序(1)在pipeline外执行,最后一个工序是保存checkpoint pipeline := NewPipeline(4, 8, 2, 1) for { //(1) //加载100条数据,并修改变量checkpoint //data是数组,每个元素是一条评论,之后的联表、NLP都直接修改data里的每条记录。 data, err := extractReviewsFromA(&checkpoint, 100) if err != nil { log.Print(err) break } //这里有个Golang著名的坑。 //“checkpoint”是循环体外的变量,它在内存中只有一个实例并在循环中不断被修改,所以不能在异步中使用它。 //这里创建一个副本curCheckpoint,储存本次循环的checkpoint。 curCheckpoint := checkpoint ok := pipeline.Async(func() error { //(2) return joinUserFromB(data) }, func() error { //(3) return nlp(data) }, func() error { //(4) return loadDataToC(data) }, func() error { //(5)保存checkpoint log.Print("done:", curCheckpoint) return saveCheckpoint(curCheckpoint) }) if !ok { break } if len(data) < 100 { break } //处理完毕 } err := pipeline.Wait() if err != nil { log.Print(err) } }
以上がgolang がビッグデータを処理する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









Go ではファイルを安全に読み書きすることが重要です。ガイドラインには以下が含まれます。 ファイル権限の確認 遅延を使用してファイルを閉じる ファイル パスの検証 コンテキスト タイムアウトの使用 これらのガイドラインに従うことで、データのセキュリティとアプリケーションの堅牢性が確保されます。

Go データベース接続の接続プーリングを構成するにはどうすればよいですか?データベース接続を作成するには、database/sql パッケージの DB タイプを使用します。同時接続の最大数を制御するには、MaxOpenConns を設定します。アイドル状態の接続の最大数を設定するには、ConnMaxLifetime を設定します。

JSON データは、gjson ライブラリまたは json.Unmarshal 関数を使用して MySQL データベースに保存できます。 gjson ライブラリは、JSON フィールドを解析するための便利なメソッドを提供します。json.Unmarshal 関数には、JSON データをアンマーシャリングするためのターゲット型ポインターが必要です。どちらの方法でも、SQL ステートメントを準備し、データをデータベースに永続化するために挿入操作を実行する必要があります。

GoLang フレームワークと Go フレームワークの違いは、内部アーキテクチャと外部機能に反映されています。 GoLang フレームワークは Go 標準ライブラリに基づいてその機能を拡張していますが、Go フレームワークは特定の目的を達成するための独立したライブラリで構成されています。 GoLang フレームワークはより柔軟であり、Go フレームワークは使いやすいです。 GoLang フレームワークはパフォーマンスの点でわずかに優れており、Go フレームワークはよりスケーラブルです。ケース: gin-gonic (Go フレームワーク) は REST API の構築に使用され、Echo (GoLang フレームワーク) は Web アプリケーションの構築に使用されます。

FindStringSubmatch 関数は、正規表現に一致する最初の部分文字列を検索します。この関数は、最初の要素が一致した文字列全体で、後続の要素が個々の部分文字列である、一致する部分文字列を含むスライスを返します。コード例: regexp.FindStringSubmatch(text,pattern) は、一致する部分文字列のスライスを返します。実際のケース: 電子メール アドレスのドメイン名を照合するために使用できます。たとえば、email:="user@example.com", pattern:=@([^\s]+)$ を使用してドメイン名を照合します。 [1]。

バックエンド学習パス:フロントエンドからバックエンドへの探査の旅は、フロントエンド開発から変わるバックエンド初心者として、すでにNodeJSの基盤を持っています...

Go 言語で事前定義されたタイムゾーンを使用するには、次の手順が必要です。 「time」パッケージをインポートします。 LoadLocation 関数を使用して特定のタイム ゾーンを読み込みます。読み込まれたタイムゾーンは、Time オブジェクトの作成、時刻文字列の解析、日付と時刻の変換の実行などの操作で使用します。事前定義されたタイム ゾーン機能の適用を説明するために、異なるタイム ゾーンを使用して日付を比較します。

Go フレームワーク開発 FAQ: フレームワークの選択: アプリケーションの要件と開発者の好み (Gin (API)、Echo (拡張可能)、Beego (ORM)、Iris (パフォーマンス) など) によって異なります。インストールと使用: gomod コマンドを使用して、フレームワークをインストールし、インポートして使用します。データベース対話: gorm などの ORM ライブラリを使用して、データベース接続と操作を確立します。認証と認可: gin-contrib/sessions などのセッション管理および認証ミドルウェアを使用します。実際のケース: Pin フレームワークを使用して、POST、GET、その他の関数を提供する単純なブログ API を構築します。
