docker は GPU をサポートしていますか?

リリース: 2020-04-03 09:02:33
オリジナル
2891 人が閲覧しました

docker は GPU をサポートしていますか?

Docker は GPU をサポートしており、Docker は nvidia-docker2 を通じて GPU を使用できます。 daemon.json ファイルで nvidia を使用するようにランタイムを構成します。コンテナーを起動した後、nvidia-smi を実行してすべての GPU を表示します。

docker で GPU をマウントする方法の紹介:

nvidia-docker2 の使用

つまり、nvidia-docker2 を使用すると、必要なだけで簡単に GPU を使用できます。 nvidia

cat /etc/docker/daemon.json
{
    "default-runtime": "nvidia",
    "runtimes": {
        "nvidia": {
            "path": "/usr/bin/nvidia-container-runtime",
            "runtimeArgs": []
        }
    },
    "exec-opts": ["native.cgroupdriver=systemd"]
}
ログイン後にコピー

を使用してコンテナを起動した後、nvidia-smi:

[root@localhost] docker run -it 98b41a1e975d bash
root@6db1dd28459d:/notebooks# nvidia-smi

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 410.79       Driver Version: 410.79       CUDA Version: 10.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla V100-SXM2...  On   | 00000000:8A:00.0 Off |                    0 |
| N/A   40C    P0    57W / 300W |   4053MiB / 16130MiB |      4%      Default |
+-------------------------------+----------------------+----------------------+
|   1  Tesla V100-SXM2...  On   | 00000000:8B:00.0 Off |                    0 |
| N/A   38C    P0    40W / 300W |      0MiB / 16130MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   2  Tesla V100-SXM2...  On   | 00000000:8C:00.0 Off |                    0 |
| N/A   42C    P0    46W / 300W |      0MiB / 16130MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   3  Tesla V100-SXM2...  On   | 00000000:8D:00.0 Off |                    0 |
| N/A   39C    P0    40W / 300W |      0MiB / 16130MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   4  Tesla V100-SXM2...  On   | 00000000:B3:00.0 Off |                    0 |
| N/A   39C    P0    42W / 300W |      0MiB / 16130MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   5  Tesla V100-SXM2...  On   | 00000000:B4:00.0 Off |                    0 |
| N/A   41C    P0    57W / 300W |   7279MiB / 16130MiB |      4%      Default |
+-------------------------------+----------------------+----------------------+
|   6  Tesla V100-SXM2...  On   | 00000000:B5:00.0 Off |                    0 |
| N/A   40C    P0    45W / 300W |      0MiB / 16130MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   7  Tesla V100-SXM2...  On   | 00000000:B6:00.0 Off |                    0 |
| N/A   41C    P0    44W / 300W |      0MiB / 16130MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
+-----------------------------------------------------------------------------+
ログイン後にコピー

を実行すると、すべての GPU カードを表示できます。NVIDIA_DRIVER_CAPABILITIES を通じていくつかのライブラリを追加できます。 NVIDIA_VISIBLE_DEVICES では、特定の GPU カードのみを使用できます。

[root@localhost cuda-9.0]# docker run -it  --env NVIDIA_DRIVER_CAPABILITIES="compute,utility"  --env NVIDIA_VISIBLE_DEVICES=0,1 98b41a1e975d bash
root@97bf127ff83a:/notebooks# nvidia-smi
Tue Oct 15 09:29:45 2019
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 410.79       Driver Version: 410.79       CUDA Version: 10.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla V100-SXM2...  On   | 00000000:8A:00.0 Off |                    0 |
| N/A   39C    P0    57W / 300W |   4053MiB / 16130MiB |      3%      Default |
+-------------------------------+----------------------+----------------------+
|   1  Tesla V100-SXM2...  On   | 00000000:8B:00.0 Off |                    0 |
| N/A   37C    P0    40W / 300W |      0MiB / 16130MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
+-----------------------------------------------------------------------------+
ログイン後にコピー

その他の関連チュートリアルについては、PHP 中国語 Web サイトの docker チュートリアル 列に注意してください。

以上がdocker は GPU をサポートしていますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

関連ラベル:
ソース:php.cn
このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
人気のチュートリアル
詳細>
最新のダウンロード
詳細>
ウェブエフェクト
公式サイト
サイト素材
フロントエンドテンプレート