ホームページ 運用・保守 Nginx 負荷分散のための一般的なアルゴリズムの紹介

負荷分散のための一般的なアルゴリズムの紹介

Jun 16, 2020 pm 04:40 PM
アルゴリズム 負荷分散

負荷分散のための一般的なアルゴリズムの紹介

負荷分散に一般的に使用されるアルゴリズム:

1. ラウンドロビン

ポーリングは負荷分散です。シンプルなアルゴリズムなので、追加のパラメータを設定する必要はありません。構成ファイル内に M 台のサーバーがあると仮定すると、アルゴリズムはサーバー ノード リストを走査し、ノード順に各ラウンドで 1 台のサーバーを選択してリクエストを処理します。すべてのノードが一度呼び出されると、アルゴリズムは最初のノードから再度探索します。

特徴:

このアルゴリズムの各リクエストは、時系列順に 1 つずつ異なるサーバーに割り当てられて処理されるため、各サーバーが実行するサーバーのパフォーマンスが同等のクラスター状況に適しています。同じ負荷です。ただし、サーバーのパフォーマンスが異なるクラスターの場合、このアルゴリズムでは不当なリソース割り当てなどの問題が発生しやすくなります。

2. 加重ポーリング

通常のポーリングによるデメリットを回避するために、加重ポーリングが登場しました。加重ポーリングでは、各サーバーに独自の加重値が設定されます。一般に、重みの値が大きいほどサーバーのパフォーマンスが向上し、より多くのリクエストを処理できるようになります。このアルゴリズムでは、クライアントのリクエストはその重みに比例して割り当てられ、リクエストが到着すると、最も大きな重みを持つサーバーが最初に割り当てられます。

機能:

加重ポーリングをサーバーのパフォーマンスが異なるクラスターに適用して、リソースの割り当てをより合理的にすることができます。

中心となるアイデアは、各サーバー ノードを走査してノードの重みを計算することです。計算ルールは、current_weight とそれに対応するEffective_weight の合計です。走査の各ラウンドで、最大の重みを持つノードがノードとして選択されます。最適なサーバーノード。このうち、Effective_weight はアルゴリズム実行時のリソース状況やレスポンス状況によって変化します。

3. IP ハッシュ (IP ハッシュ)

ip_hash は、リクエストを行ったクライアント IP のハッシュ値に基づいてサーバーを割り当てます。このアルゴリズムにより、すべてのリクエストが確実に実行されます。同じ IP から送信されたリクエストは同じサーバーにマッピングされるか、同じハッシュ値を持つ異なる IP が同じサーバーにマッピングされます。

特徴:

このアルゴリズムは、クラスター展開環境でセッションが共有されない問題をある程度解決します。

推奨チュートリアル: nginx チュートリアル

以上が負荷分散のための一般的なアルゴリズムの紹介の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

CLIP-BEVFormer: BEVFormer 構造を明示的に監視して、ロングテール検出パフォーマンスを向上させます。 CLIP-BEVFormer: BEVFormer 構造を明示的に監視して、ロングテール検出パフォーマンスを向上させます。 Mar 26, 2024 pm 12:41 PM

上記および筆者の個人的な理解: 現在、自動運転システム全体において、認識モジュールが重要な役割を果たしている。道路を走行する自動運転車は、認識モジュールを通じてのみ正確な認識結果を得ることができる。下流の規制および制御モジュール自動運転システムでは、タイムリーかつ正確な判断と行動決定が行われます。現在、自動運転機能を備えた自動車には通常、サラウンドビューカメラセンサー、ライダーセンサー、ミリ波レーダーセンサーなどのさまざまなデータ情報センサーが搭載されており、さまざまなモダリティで情報を収集して正確な認識タスクを実現しています。純粋な視覚に基づく BEV 認識アルゴリズムは、ハードウェア コストが低く導入が容易であるため、業界で好まれており、その出力結果はさまざまな下流タスクに簡単に適用できます。

C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 Jun 03, 2024 pm 01:25 PM

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

C++sort 関数の基礎となる原則とアルゴリズムの選択を調べる C++sort 関数の基礎となる原則とアルゴリズムの選択を調べる Apr 02, 2024 pm 05:36 PM

C++sort 関数の最下層はマージ ソートを使用し、その複雑さは O(nlogn) で、クイック ソート、ヒープ ソート、安定したソートなど、さまざまなソート アルゴリズムの選択肢を提供します。

人工知能は犯罪を予測できるのか? CrimeGPT の機能を調べる 人工知能は犯罪を予測できるのか? CrimeGPT の機能を調べる Mar 22, 2024 pm 10:10 PM

人工知能 (AI) と法執行機関の融合により、犯罪の予防と検出の新たな可能性が開かれます。人工知能の予測機能は、犯罪行為を予測するためにCrimeGPT (犯罪予測技術) などのシステムで広く使用されています。この記事では、犯罪予測における人工知能の可能性、その現在の応用、人工知能が直面する課題、およびこの技術の倫理的影響について考察します。人工知能と犯罪予測: 基本 CrimeGPT は、機械学習アルゴリズムを使用して大規模なデータセットを分析し、犯罪がいつどこで発生する可能性があるかを予測できるパターンを特定します。これらのデータセットには、過去の犯罪統計、人口統計情報、経済指標、気象パターンなどが含まれます。人間のアナリストが見逃す可能性のある傾向を特定することで、人工知能は法執行機関に力を与えることができます

改良された検出アルゴリズム: 高解像度の光学式リモートセンシング画像でのターゲット検出用 改良された検出アルゴリズム: 高解像度の光学式リモートセンシング画像でのターゲット検出用 Jun 06, 2024 pm 12:33 PM

01 今後の概要 現時点では、検出効率と検出結果の適切なバランスを実現することが困難です。我々は、光学リモートセンシング画像におけるターゲット検出ネットワークの効果を向上させるために、多層特徴ピラミッド、マルチ検出ヘッド戦略、およびハイブリッドアテンションモジュールを使用して、高解像度光学リモートセンシング画像におけるターゲット検出のための強化されたYOLOv5アルゴリズムを開発しました。 SIMD データセットによると、新しいアルゴリズムの mAP は YOLOv5 より 2.2%、YOLOX より 8.48% 優れており、検出結果と速度のバランスがより優れています。 02 背景と動機 リモート センシング技術の急速な発展に伴い、航空機、自動車、建物など、地表上の多くの物体を記述するために高解像度の光学式リモート センシング画像が使用されています。リモートセンシング画像の判読における物体検出

Java フレームワークのパフォーマンス最適化における負荷分散戦略の適用 Java フレームワークのパフォーマンス最適化における負荷分散戦略の適用 May 31, 2024 pm 08:02 PM

Java フレームワークでは、リクエストを効率的に分散するために負荷分散戦略が重要です。同時実行の状況に応じて、戦略が異なればパフォーマンスも異なります。 ポーリング方式: 同時実行が少ない場合でも安定したパフォーマンス。加重ポーリング方式: パフォーマンスは、同時実行性が低い場合のポーリング方式と同様です。最小接続数の方法: 同時実行性が高い場合に最高のパフォーマンスが得られます。ランダムな方法: シンプルだがパフォーマンスは低い。 Consistent Hashing: サーバーの負荷を分散します。この記事では、アプリケーションのパフォーマンスを大幅に向上させるために、パフォーマンス データに基づいて適切な戦略を選択する方法を実際の事例と組み合わせて説明します。

58 ポートレート プラットフォームの構築におけるアルゴリズムの適用 58 ポートレート プラットフォームの構築におけるアルゴリズムの適用 May 09, 2024 am 09:01 AM

1. 58 Portraits プラットフォーム構築の背景 まず、58 Portraits プラットフォーム構築の背景についてお話ししたいと思います。 1. 従来のプロファイリング プラットフォームの従来の考え方ではもはや十分ではありません。ユーザー プロファイリング プラットフォームを構築するには、複数のビジネス分野からのデータを統合して、ユーザーの行動や関心を理解するためのデータ マイニングも必要です。最後に、ユーザー プロファイル データを効率的に保存、クエリ、共有し、プロファイル サービスを提供するためのデータ プラットフォーム機能も必要です。自社構築のビジネス プロファイリング プラットフォームとミドルオフィス プロファイリング プラットフォームの主な違いは、自社構築のプロファイリング プラットフォームは単一のビジネス ラインにサービスを提供し、オンデマンドでカスタマイズできることです。ミッドオフィス プラットフォームは複数のビジネス ラインにサービスを提供し、複雑な機能を備えていることです。モデリングを提供し、より一般的な機能を提供します。 2.58 中間プラットフォームのポートレート構築の背景のユーザーのポートレート 58

SOTA をリアルタイムで追加すると、大幅に増加します。 FastOcc: より高速な推論と展開に適した Occ アルゴリズムが登場しました。 SOTA をリアルタイムで追加すると、大幅に増加します。 FastOcc: より高速な推論と展開に適した Occ アルゴリズムが登場しました。 Mar 14, 2024 pm 11:50 PM

上記と著者の個人的な理解は、自動運転システムにおいて、認識タスクは自動運転システム全体の重要な要素であるということです。認識タスクの主な目的は、自動運転車が道路を走行する車両、路側の歩行者、運転中に遭遇する障害物、道路上の交通標識などの周囲の環境要素を理解して認識できるようにすることで、それによって下流のシステムを支援できるようにすることです。モジュール 正しく合理的な決定と行動を行います。自動運転機能を備えた車両には、通常、サラウンドビューカメラセンサー、ライダーセンサー、ミリ波レーダーセンサーなど、さまざまな種類の情報収集センサーが装備されており、自動運転車が正確に認識し、認識できるようにします。周囲の環境要素を理解することで、自動運転車が自動運転中に正しい判断を下せるようになります。頭

See all articles