docker はどこでポートを設定しますか?
docker はどこでポートを設定しますか?
docker がポートを設定する場所:
1. 自動マッピング
# docker run -d -p 80 --name myweb 1311399350/myweb nginx -g "daemon off;"
- 上記 p 80
は、docker ホスト上のポートをランダムに開き (docker port コマンドを使用して表示することも、docker ps でも確認できます。ここでは 32768 です)、コンテナ内のポート 80 にマップします。
2. マッピングの指定
自動マッピングに加えて、次のようなマッピング関係を指定することもできます。ホスト マシンの 80 ポートがコンテナのポート 80 にマッピングされていること。このような指定には長所と短所があり、利点は、ポートが既知であるため注意して使用する必要があることですが、欠点は、複数の同一のコンテナを実行できず、ホスト アプリケーションと競合しやすいことです。
3. dockerfile の EXPOSE ディレクティブで指定されたポートを公開しますdockerfile のコンテナによって公開されるポートまたはポート範囲を指定します
# docker run -d -p 80:80 --name myweb 1311399350/myweb nginx -g "daemon off;" # docker port myweb 80 0.0.0.0:80
大文字を使用する -P パラメーターは、dockerfile の EXPOSE 命令で指定されたポート (コンテナー内のポート) をローカル ホストに公開し、それをローカル ホストのポートにランダムにバインドします。
EXPOSE 20010 EXPOSE 10011
コンテナによってマッピングされたホスト ポートを表示するには、
# docker ポート コンテナ containsre-port を使用します。 以上がdocker はどこでポートを設定しますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。# docker run -d -P --name myweb 1311399350/myweb nginx -g "daemon off;"

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









PyCharm でプロジェクトをパッケージ化するには 4 つの方法があります。 別個の実行可能ファイルとしてパッケージ化する: EXE 単一ファイル形式にエクスポートする。インストーラーとしてパッケージ化されています: Setuptools Makefile を生成してビルドします。 Docker イメージとしてパッケージ化する: イメージ名を指定し、ビルド オプションを調整してビルドします。コンテナとしてパッケージ化する: ビルドするイメージを指定し、ランタイム オプションを調整して、コンテナを起動します。

PHP 分散システム アーキテクチャは、ネットワークに接続されたマシン全体にさまざまなコンポーネントを分散することで、スケーラビリティ、パフォーマンス、およびフォールト トレランスを実現します。このアーキテクチャには、アプリケーション サーバー、メッセージ キュー、データベース、キャッシュ、ロード バランサーが含まれます。 PHP アプリケーションを分散アーキテクチャに移行する手順は次のとおりです。 サービス境界の特定 メッセージ キュー システムの選択 マイクロサービス フレームワークの採用 コンテナ管理への展開 サービスの検出

概要 LLaMA-3 (LargeLanguageModelMetaAI3) は、Meta Company が開発した大規模なオープンソースの生成人工知能モデルです。前世代のLLaMA-2と比べてモデル構造に大きな変更はありません。 LLaMA-3 モデルは、さまざまなアプリケーションのニーズやコンピューティング リソースに合わせて、小規模、中規模、大規模などのさまざまな規模のバージョンに分割されています。小型モデルのパラメータ サイズは 8B、中型モデルのパラメータ サイズは 70B、大型モデルのパラメータ サイズは 400B に達します。ただし、トレーニング中の目標は、マルチモーダルおよび複数言語の機能を達成することであり、その結果は GPT4/GPT4V に匹敵することが期待されます。 Ollama をインストールするOllama は、オープンソースの大規模言語モデル (LL) です。

回答: PHP マイクロサービスは、アジャイル開発のために HelmCharts でデプロイされ、分離とスケーラビリティのために DockerContainer でコンテナ化されます。詳細説明: HelmCharts を使用して PHP マイクロサービスを自動的にデプロイし、アジャイル開発を実現します。 Docker イメージを使用すると、マイクロサービスの迅速な反復とバージョン管理が可能になります。 DockerContainer 標準はマイクロサービスを分離し、Kubernetes がコンテナの可用性とスケーラビリティを管理します。 Prometheus と Grafana を使用して、マイクロサービスのパフォーマンスと健全性を監視し、アラームと自動修復メカニズムを作成します。

ピン張りのノードの詳細な説明とインストールガイドこの記事では、ピネットワークのエコシステムを詳細に紹介します - PIノードは、ピン系生態系における重要な役割であり、設置と構成の完全な手順を提供します。 Pinetworkブロックチェーンテストネットワークの発売後、PIノードは多くの先駆者の重要な部分になり、テストに積極的に参加し、今後のメインネットワークリリースの準備をしています。まだピン張りのものがわからない場合は、ピコインとは何かを参照してください。リストの価格はいくらですか? PIの使用、マイニング、セキュリティ分析。パインワークとは何ですか?ピン競技プロジェクトは2019年に開始され、独占的な暗号通貨PIコインを所有しています。このプロジェクトは、誰もが参加できるものを作成することを目指しています

DeepSeekをインストールするには、Dockerコンテナ(最も便利な場合は、互換性について心配する必要はありません)を使用して、事前コンパイルパッケージ(Windowsユーザー向け)を使用してソースからコンパイル(経験豊富な開発者向け)を含む多くの方法があります。公式文書は慎重に文書化され、不必要なトラブルを避けるために完全に準備します。

コンテナ化により、次の方法で Java 関数のパフォーマンスが向上します。 リソースの分離 - 分離されたコンピューティング環境を確保し、リソースの競合を回避します。軽量 - 消費するシステム リソースが少なくなり、実行時のパフォーマンスが向上します。高速起動 - 関数の実行遅延を軽減します。一貫性 - アプリケーションとインフラストラクチャを分離して、環境全体で一貫した動作を保証します。

Docker コンテナを使用した Java EE アプリケーションのデプロイ: Dockerfile を作成してイメージを定義し、イメージを構築し、コンテナを実行してポートをマップし、ブラウザでアプリケーションにアクセスします。サンプル JavaEE アプリケーション: REST API はデータベースと対話し、Docker 経由でデプロイ後にローカルホストでアクセスできます。
