データマイニングとは何ですか?
データマイニングは、大量のデータから事前に知られていない有用な情報を抽出するプロセスです。データマイニングの目標は、過去の行動データに基づいて将来の行動を予測する意思決定モデルを構築することです。
#データマイニングとは、アルゴリズムを使用して大量のデータに隠された情報を検索するプロセスを指します。
データ マイニングは通常、コンピューター サイエンスに関連しており、統計、オンライン分析処理、インテリジェンス検索、機械学習、エキスパート システム (過去の経験則に基づく)、パターン認識などの多くの方法を通じて上記の目標を達成します。
データ マイニングは、データベースにおける知識発見 (KDD) に不可欠な部分であり、KDD は生データを有用な情報に変換するプロセス全体です。このプロセスには、一連の変換ステップが含まれます。データの前処理からデータへの変換まで、データマイニング結果の後処理。
データ マイニングの起源
さまざまな分野の研究者が集まり、さまざまなデータ型を処理できるツールの開発を開始しました。より効率的でスケーラブルなツール。これらの研究は、研究者が以前に使用していた方法論とアルゴリズムに基づいており、最終的にはデータ マイニングの分野に到達します。
特に、データマイニングでは、(1) 統計からのサンプリング、推定、仮説検証、(2) 人工知能、パターン認識、機械学習の検索アルゴリズムのモデリング技術と学習の分野のアイデアが活用されています。理論。
データマイニングは、最適化、進化的計算、情報理論、信号処理、視覚化、情報検索など、他の分野のアイデアも急速に取り入れています。
他のいくつかの領域も重要な補助的な役割を果たします。データベース システムは、効率的なストレージ、インデックス作成、クエリ処理のサポートを提供します。高性能 (並列) コンピューティングから派生したテクノロジは、多くの場合、大量のデータ セットを処理する際に重要になります。分散テクノロジーは、大量のデータの処理にも役立ちますが、データを一元的に処理できない場合にはさらに重要になります。
KDD(Knowledge Discovery from Database)
-
データクリーニング
ノイズの除去一貫性のないデータ;
-
データ統合
複数のデータ ソースを組み合わせることができます;
-
データ選択
分析タスクに関連するデータをデータベースから抽出する;
-
データ変換
集計または集計操作を通じてデータをマイニングに適したデータに変換および統合する フォーム;
- #データ マイニング
#基本的な手順、インテリジェントな方法を使用してデータ パターンを抽出する;
##パターン評価 #特定の関心レベルに基づいて知識を表す本当に興味深いパターンを特定します。 -
知識表現
視覚化および知識表現テクノロジーを使用して、マイニングされた知識をユーザーに提供します。
ビジネス理解
ビジネスの観点からプロジェクトの目標と要件を理解し、理論分析を通じてこの理解をデータ マイニングの運用上の問題に変換し、目標を達成するための予備計画を策定します。- データ理解データ理解フェーズは、生データの収集から始まり、次にデータに慣れ、データ品質の問題を特定し、データの予備的な理解を調査し、情報を調査するための仮説を立てるための興味深いサブセットを発見します。
- データ準備 データ準備ステージは、元の生データの未処理データからデータ マイニングに必要な情報を構築するアクティビティを指します。データ準備タスクは、所定の順序なしで複数回実行できます。これらのタスクの主な目的は、次元解析の要件に従ってソース システムから必要な情報を取得することであり、データの変換、クリーニング、構築、統合などのデータの前処理が必要です。 モデリング
-
この段階では、主にさまざまなモデリング手法を選択して適用します。同時に、最適な値が得られるようにパラメータが調整されます。通常、同じタイプのデータ マイニング問題に対して複数のモデリング手法が存在します。一部のテクノロジーにはデータ フォームに特別な要件があり、多くの場合、データ準備段階に戻る必要があります。
モデルの評価 (評価) -
モデルの展開とリリースの前に、技術レベルから始めて、モデルの効果を判断し、モデル構築の各ステップを検討するだけでなく、ビジネス目標に基づいて実際のビジネス シナリオにおけるモデルの実用性を評価する必要があります。この段階の主な目的は、十分に考慮されていない重要なビジネス上の問題があるかどうかを判断することです。
モデルの展開 (展開) モデルの展開後完了すると、(顧客)現在の背景と目標の完了状況に基づいて、パッケージは業務システムの使用ニーズを満たします。
#データ マイニング タスク
一般に、データ マイニング タスクは次の 2 つのカテゴリに分類されます。- # 予測タスク。
これらのタスクの目標は、他の属性の値に基づいて特定の属性の値を予測することです。一般に、予測対象の属性は目的変数または従属変数と呼ばれ、予測に使用される属性は説明変数または独立変数と呼ばれます。
- タスクについて説明します
。目標は、データ内の根底にあるつながりを要約するパターン (相関関係、傾向、クラスター、軌跡、異常) を導き出すことです。記述的データ マイニング タスクは本質的に探索的なものが多く、結果を検証して解釈するために後処理技術が必要になることがよくあります。
ターゲット変数の関数を説明することによる、ターゲット変数のモデルの構築が含まれます。変数。 予測モデリング タスクには、離散ターゲット変数の予測に使用される分類と、連続ターゲット変数の予測に使用される回帰の 2 種類があります。
たとえば、Web ユーザーがオンライン書店で本を購入するかどうかを予測することは、ターゲット変数がバイナリであるため分類タスクになりますが、株価の将来の価格を予測することは、価格が連続的であるため回帰タスクとなります。値の属性。
両方のタスクの目標は、ターゲット変数の予測値と実際の値の間の誤差を最小限に抑えるようにモデルをトレーニングすることです。予測モデリングは、製品のプロモーションに対する顧客の反応を判断したり、地球の生態系の混乱を予測したり、検査結果に基づいて患者が病気に罹患しているかどうかを判断したりするために使用できます。
アソシエーション分析 (アソシエーション分析)は、データ内の強い相関特徴を説明するパターンを発見するために使用されます。 発見されたパターンは通常、含意ルールまたは特徴のサブセットの形式で表現されます。検索空間のサイズは指数関数的であるため、相関分析の目標は、最も興味深いパターンを効率的な方法で抽出することです。関連分析の応用には、関連する機能を持つゲノムの発見、ユーザーが一緒に訪問する Web ページの特定、地球の気候システムのさまざまな要素間のつながりの理解などが含まれます。
クラスター分析(クラスター分析)は、同じクラスターに属する観測値が、異なるクラスターに属する観測値よりも互いに類似するように、密接に関連する観測値のグループを見つけることを目的としています。できるだけ似たもの。クラスタリングを使用すると、関連する顧客のグループ化、地球の気候に大きな影響を与える海洋領域の特定、データの圧縮などを行うことができます。
異常検出 (異常検出)このタスクは、他のデータと特性が大きく異なる観測値を特定することです。 このような観測値は、異常または外れ値と呼ばれます。異常検出アルゴリズムの目標は、実際の異常を発見し、正常なオブジェクトを異常として誤ってラベル付けすることを回避することです。言い換えれば、優れた異常検出器は、高い検出率と低い誤警報率を備えていなければなりません。
異常検出のアプリケーションには、詐欺、サイバー攻撃、病気の異常なパターン、生態系の混乱などの検出が含まれます。
関連知識の詳細については、
PHP 中国語 Web サイト以上がデータマイニングとは何ですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









ビッグデータとデータマイニングの台頭により、ますます多くのプログラミング言語がデータマイニング機能をサポートし始めています。 Go 言語は、高速、安全、効率的なプログラミング言語として、データ マイニングにも使用できます。では、Go 言語をデータマイニングに使用するにはどうすればよいでしょうか?ここでは、重要な手順とテクニックをいくつか紹介します。データの取得 まず、データを取得する必要があります。これは、Web ページ上の情報のクローリング、API を使用したデータの取得、データベースからのデータの読み取りなど、さまざまな手段を通じて実現できます。 Go 言語にはリッチ HTTP が付属しています

MySql は、企業および個人のデータの保存と管理に広く使用されている、一般的なリレーショナル データベース管理システムです。 MySql は、データの保存とクエリに加えて、ユーザーがデータをより深く理解し活用するのに役立つデータ分析、データ マイニング、統計などの機能も提供します。データはあらゆるビジネスや組織にとって貴重な資産であり、データ分析は企業がビジネス上の正しい意思決定を行うのに役立ちます。 MySql はさまざまな方法でデータ分析とデータ マイニングを実行できます。ここでは、いくつかの実用的なテクニックとツールを紹介します。

違い: 1. 「データ分析」によって引き出される結論は人間の知的活動の結果ですが、「データマイニング」によって引き出される結論は学習セット[またはトレーニングセット、サンプルセット]から機械によって発見された知識ルールです。 2. 「データ分析」では数学的モデルを確立できず、手動でのモデリングが必要ですが、「データマイニング」では数学的モデリングが直接完了します。

BI ツールを使用するときによく遭遇する質問は、「SQL を使用せずにデータを生成および処理するにはどうすればよいですか? アルゴリズムを使用せずにマイニング分析を行うことはできますか?」というものです。プロのアルゴリズム チームがデータ マイニングを行う場合、データの分析と視覚化も行われます。 。アルゴリズムのモデリングとデータ分析の作業を合理的な方法で完了することも、効率を向上させる良い方法です。同時に、プロのデータ ウェアハウス チームにとって、同じテーマのデータ コンテンツは「繰り返し構築され、比較的分散して使用および管理される」という問題に直面しています。同じテーマで異なるコンテンツのデータ セットを同時に作成する方法はあるのでしょうか。 1つのタスクにかかる時間は?生成されたデータセットをデータ構築に再参加するための入力として使用できますか? 1. DataWind のビジュアル モデリング機能は、Volcano Engine によって開始された BI プラットフォーム Da に付属しています

データ時代の到来により、ますます多くのデータが収集され、分析や予測に使用されます。時系列データは、時間に基づく一連のデータを含む一般的なデータ タイプです。このタイプのデータを予測するために使用される方法は、時系列予測手法と呼ばれます。 Python は、強力なデータ サイエンスと機械学習のサポートを備えた非常に人気のあるプログラミング言語であるため、時系列予測にも非常に適したツールです。この記事では、Python で一般的に使用される時系列予測手法をいくつか紹介し、いくつかの実用的なアプリケーションを提供します。

Apriori アルゴリズムは、データ マイニングの分野における相関ルール マイニングの一般的な手法であり、ビジネス インテリジェンス、マーケティングなどの分野で広く使用されています。 Python は一般的なプログラミング言語として、Apriori アルゴリズムを実装するための複数のサードパーティ ライブラリも提供しています。この記事では、Python での Apriori アルゴリズムの原理、実装、および応用について詳しく紹介します。 1. Apriori アルゴリズムの原理 Apriori アルゴリズムの原理を紹介する前に、まず相関ルール マイニングにおける次の 2 つの概念、つまり頻度の高いアイテムセットとサポートについて学びましょう。

人工知能とビッグデータテクノロジーの台頭により、データを効率的に保存および処理する方法に注目する企業や企業がますます増えています。 Redis は、高性能の分散メモリ データベースとして、人工知能とデータ マイニングの分野でますます注目を集めています。この記事では、Redis の特徴と、人工知能およびデータ マイニング アプリケーションにおける Redis の実践について簡単に紹介します。 Redis は、オープンソースの高性能、スケーラブルな NoSQL データベースです。さまざまなデータ構造をサポートし、キャッシュ、メッセージ キュー、カウンターなどを提供します。

PHP は、Web サイト開発やデータ処理などの分野で広く使用されている優れたサーバーサイド スクリプト言語です。インターネットの急速な発展とデータ量の増加に伴い、テキストの自動分類やデータマイニングをいかに効率的に行うかが重要な課題となっています。この記事では、PHP での自動テキスト分類とデータマイニングの方法とテクニックを紹介します。 1. 自動テキスト分類とデータマイニングとは何ですか?自動テキスト分類とは、テキストを内容に応じて自動的に分類するプロセスを指し、通常は機械学習アルゴリズムを使用して実装されます。データマイニングとは、