文字列をPythonの正規表現と一致させる方法
文字列を Python 正規表現で照合する方法: 1. 正規表現 [(. ?)] を使用して単一位置の文字列を抽出します; 2. [(?P
…)] を使用します。正規表現 [複数の連続する位置にある文字列と一致します。
関連する無料学習の推奨事項: Python ビデオ チュートリアル
Python 正規表現で文字列を照合する方法:
#1. 単一位置での文字列抽出この中でこの場合、正規表現
(. ?) を使用して抽出できます。たとえば、文字列「a123b」の場合、ab 間の値 123 を抽出する場合、正規表現を指定して findall を使用すると、状況に一致するすべての条件を含むリストが返されます。 コードは次のとおりです:
import re str = "a123b" print re.findall(r"a(.+?)b",str)# 输出['123']
文字列「a123b456b」がある場合、必要に応じてa と最初に出現する b の間の値ではなく、最後の b の間のすべての値を使用して、通常の貪欲なマッチングと非貪欲なマッチングを制御できます。
コードは次のとおりです。
import re str = "a123b456b" print re.findall(r"a(.+?)b", str) #输出['123']#?控制只匹配0或1个,所以只会输出和最近的b之间的匹配情况 print re.findall(r"a(.+)b", str) #输出['123b456'] print re.findall(r"a(.*)b", str) #输出['123b456']
複数行のマッチングが必要な場合は、 re を追加する必要があります。 S と re.M のロゴ。re.S を追加した後デフォルトでは改行文字に一致しますが、改行文字には一致しません。
コードは次のとおりです:
str = "a23b\na34b" re.findall(r"a(\d+)b.+a(\d+)b", str) #输出[] #因为不能处理str中间有\n换行的情况 re.findall(r"a(\d+)b.+a(\d+)b", str, re.S) #s输出[('23', '34')]
re.M を追加すると、^$ マークが各行に一致します。デフォルトでは、^ と $ は最初の行のみに一致します。
コードは次のとおりです:
str = "a23b\na34b" re.findall(r"^a(\d+)b", str) #输出['23'] re.findall(r"^a(\d+)b", str, re.M) #输出['23', '34']
この場合、
(? P< ;name>…)この正規表現は抽出に使用されます。たとえば、webserver のアクセス ログに次の行があるとします。'192.168.0.1 25/Oct/2012:14:46:34 "GET /api HTTP/1.1" 200 44 "http://abc.com/ search" "Mozilla/5.0"'
、ログのこの行のすべての内容を抽出したいので、複数の (?P<name>expr)
を記述して抽出できます。ここで名前を指定できます。位置文字列で名前が付けられた変数の場合、expr を位置を抽出するための正規表現に変更できます。 コードは次のとおりです:
import re line ='192.168.0.1 25/Oct/2012:14:46:34 "GET /api HTTP/1.1" 200 44 "http://abc.com/search" "Mozilla/5.0"' reg = re.compile('^(?P<remote_ip>[^ ]*) (?P<date>[^ ]*) "(?P<request>[^"]*)" (?P<status>[^ ]*) (?P<size>[^ ]*) "(?P<referrer>[^"]*)" "(?P<user_agent>[^"]*)"') regMatch = reg.match(line) linebits = regMatch.groupdict() print linebits for k, v in linebits.items() : print k+": "+v
出力結果は次のとおりです:
status: 200 referrer: request: GET /api HTTP/1.1 user_agent: Mozilla/5.0 date: 25/Oct/2012:14:46:34size: 44 remote_ip: 192.168.0.1
以上が文字列をPythonの正規表現と一致させる方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

Pytorch GPUアクセラレーションを有効にすることで、CentOSシステムでは、PytorchのCUDA、CUDNN、およびGPUバージョンのインストールが必要です。次の手順では、プロセスをガイドします。CUDAおよびCUDNNのインストールでは、CUDAバージョンの互換性が決定されます。NVIDIA-SMIコマンドを使用して、NVIDIAグラフィックスカードでサポートされているCUDAバージョンを表示します。たとえば、MX450グラフィックカードはCUDA11.1以上をサポートする場合があります。 cudatoolkitのダウンロードとインストール:nvidiacudatoolkitの公式Webサイトにアクセスし、グラフィックカードでサポートされている最高のCUDAバージョンに従って、対応するバージョンをダウンロードしてインストールします。 cudnnライブラリをインストールする:

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

MINIOオブジェクトストレージ:CENTOSシステムの下での高性能展開Minioは、Amazons3と互換性のあるGO言語に基づいて開発された高性能の分散オブジェクトストレージシステムです。 Java、Python、JavaScript、Goなど、さまざまなクライアント言語をサポートしています。この記事では、CentosシステムへのMinioのインストールと互換性を簡単に紹介します。 Centosバージョンの互換性Minioは、Centos7.9を含むがこれらに限定されない複数のCentosバージョンで検証されています。

Pytorchの分散トレーニングでは、Centosシステムでトレーニングには次の手順が必要です。Pytorchのインストール:PythonとPipがCentosシステムにインストールされていることです。 CUDAバージョンに応じて、Pytorchの公式Webサイトから適切なインストールコマンドを入手してください。 CPUのみのトレーニングには、次のコマンドを使用できます。PipinstalltorchtorchtorchvisionTorchaudioGPUサポートが必要な場合は、CUDAとCUDNNの対応するバージョンがインストールされ、インストールに対応するPytorchバージョンを使用してください。分散環境構成:分散トレーニングには、通常、複数のマシンまたは単一マシンの複数GPUが必要です。場所

PytorchをCentosシステムにインストールする場合、適切なバージョンを慎重に選択し、次の重要な要因を検討する必要があります。1。システム環境互換性:オペレーティングシステム:Centos7以上を使用することをお勧めします。 Cuda and Cudnn:PytorchバージョンとCudaバージョンは密接に関連しています。たとえば、pytorch1.9.0にはcuda11.1が必要ですが、pytorch2.0.1にはcuda11.3が必要です。 CUDNNバージョンは、CUDAバージョンとも一致する必要があります。 Pytorchバージョンを選択する前に、互換性のあるCUDAおよびCUDNNバージョンがインストールされていることを確認してください。 Pythonバージョン:Pytorch公式支店

NGINXのインストールをインストールするには、次の手順に従う必要があります。開発ツール、PCRE-Devel、OpenSSL-Develなどの依存関係のインストール。 nginxソースコードパッケージをダウンロードし、それを解凍してコンパイルしてインストールし、/usr/local/nginxとしてインストールパスを指定します。 nginxユーザーとユーザーグループを作成し、アクセス許可を設定します。構成ファイルnginx.confを変更し、リスニングポートとドメイン名/IPアドレスを構成します。 nginxサービスを開始します。依存関係の問題、ポート競合、構成ファイルエラーなど、一般的なエラーに注意する必要があります。パフォーマンスの最適化は、キャッシュをオンにしたり、ワーカープロセスの数を調整するなど、特定の状況に応じて調整する必要があります。
