目次
1. Linux系统时间的设置
2. Linux硬件时间的设置
3. 系统时间和硬件时间的同步
4. 不同机器之间的时间同步
ホームページ 運用・保守 Linuxの運用と保守 Linux の時刻同期コマンドとは何ですか?

Linux の時刻同期コマンドとは何ですか?

Jul 14, 2021 am 11:08 AM
linux 時刻同期

linux同步时间命令:1、hwclock命令,可以让系统时间和硬件时间的同步,例“hwclock -w”或“hwclock -s”;2、ntpdate命令,可以让不同机器间同步时间。

Linux の時刻同期コマンドとは何ですか?

本教程操作环境:Ubuntu 16.04系统、Dell G3电脑。

在Windwos中,系统时间的设置很简单,界面操作,通俗易懂,而且设置后,重启,关机都没关系。系统时间会自动保存在BIOS时钟里面,启动计算机的时候,系统会自动在BIOS里面取硬件时间,以保证时间的不间断。

但在Linux下,默认情况下,系统时间和硬件时间并不会自动同步。在Linux运行过程中,系统时间和硬件时间以异步的方式运行,互不干扰。硬件时间的运行,是靠BIOS电池来维持,而系统时间,是用CPU Tick来维持的。在系统开机的时候,会自动从BIOS中取得硬件时间,设置为系统时间。

1. Linux系统时间的设置

在Linux中设置系统时间,可以用date命令:

//查看时间
[root@node1 ~]# date
Tue Feb 25 20:15:18 CST 2014
//修改时间
[root@node1 ~]# date -s "20140225 20:16:00"  #yyyymmdd hh:mm:ss
Tue Feb 25 20:16:00 CST 2014
//date 有多种时间格式可接受,查看date --help
ログイン後にコピー

2. Linux硬件时间的设置

硬件时间的设置,可以用hwclock或者clock命令。两者基本相同,只用一个就行,只不过clock命令除了支持x86硬件体系外,还支持Alpha硬件体系。

//查看硬件时间可以是用hwclock ,hwclock --show 或者 hwclock -r
[root@node1 ~]# hwclock --show
Tue 25 Feb 2014 08:21:14 PM CST -0.327068 seconds
//设置硬件时间
[root@node1 ~]# hwclock --set --date "20140225 20:23:00"
[root@node1 ~]# hwclock
Tue 25 Feb 2014 08:23:04 PM CST -0.750440 seconds
ログイン後にコピー

3. 系统时间和硬件时间的同步

同步系统时间和硬件时间,可以使用hwclock命令。

//以系统时间为基准,修改硬件时间
[root@node1 ~]# hwclock --systohc <== sys(系统时间)to(写到)hc(Hard Clock)
//或者
[root@node1 ~]# hwclock -w
//以硬件时间为基准,修改系统时间
[root@node1 ~]# hwclock --hctosys
//或者
[root@node1 ~]# hwclock -s
ログイン後にコピー

4. 不同机器之间的时间同步

为了避免主机时间因为长期运行下所导致的时间偏差,进行时间同步(synchronize)的工作是非常必要的。Linux系统下,一般使用ntp服务器来同步不同机器的时间。一台机器,可以同时是ntp服务端和ntp客户端。在生产系统中,推荐使用像DNS服务器一样分层的时间服务器来同步时间。

不同机器间同步时间,可以使用ntpdate命令,也可以使用ntpd服务。

4.1 ntpdate命令

使用ntpdate比较简单。格式如下:

1 [root@node1 ~]# ntpdate [NTP IP/hostname]
2 [root@node1 ~]# ntpdate 192.168.0.1
3 [root@node1 ~]# ntpdate time.ntp.org
ログイン後にコピー

但这样的同步,只是强制性的将系统时间设置为ntp服务器时间。如果CPU Tick有问题,只是治标不治本。所以,一般配合cron命令,来进行定期同步设置。比如,在crontab中添加:

0 12 * * * /usr/sbin/ntpdate 192.168.0.1
ログイン後にコピー

这样,会在每天的12点整,同步一次时间。ntp服务器为192.168.0.1。

或者将下列脚本添加到/etc/cron.hourly/,这样就每小时会执行一次同步:

#!/bin/bash
#
# $Id: sync-clock,v 1.6 2009/12/23 15:41:29 jmates Exp $
#
# Use ntpdate to get rough clock sync with department of Genome Sciences
# time server.

NTPDATE=/usr/sbin/ntpdate
SERVER="192.168.0.1 "

# if running from cron (no tty available), sleep a bit to space
# out update requests to avoid slamming a server at a particular time
if ! test -t 0; then
  MYRAND=$RANDOM
  MYRAND=${MYRAND:=$$}

  if [ $MYRAND -gt 9 ]; then
    sleep `echo $MYRAND | sed &#39;s/.*\(..\)$/\1/&#39; | sed &#39;s/^0//&#39;`
  fi
fi

$NTPDATE -su $SERVER
# update hardware clock on Linux (RedHat?) systems
if [ -f /sbin/hwclock ]; then
  /sbin/hwclock --systohc
fi
ログイン後にコピー

4.2 ntpd服务

使用ntpd服务,要好于ntpdate加cron的组合。因为,ntpdate同步时间会造成时间的突变和跳跃,对一些依赖时间的程序和服务会造成影响。比如sleep,timer等。而且ntpd服务可以在修正时间的同时,修正CPU Tick。因此理想的做法为,在开机的时候,使用ntpdate强制同步时间,在其他时候使用ntpd服务来同步时间。

要注意的是,ntpd 有一个自我保护的机制:如果本机与上源时间相差太大,ntpd 不会运行时间同步操作,所以新设置的时间服务器一定要先 ntpdate 从上源取得时间初值, 然后启动 ntpd服务。ntpd服务运行后,先是每64秒与上源NTP服务器同步一次,根据每次同步时测得的误差值经复杂计算逐步调整自己的时间,随着误差减小,逐步增加同步的间隔。每次跳动,都会重复这个调整的过程。

4.3. ntpd服务的设置

ntpd服务的相关设置文件如下:

(1)/etc/ntp.conf:这个是NTP daemon的主要设文件,也是 NTP 唯一的设定文件。

(2)/usr /share/zoneinfo/:在这个目录下的文件其实是规定了各主要时区的时间设定文件,例如北京地区的时区设定文件在 /usr/share/zoneinfo/Asia/Shanghai 就是了。这个目录里面的文件与底下要谈的两个文件(clock 与localtime)是有关系的。

(3)/etc/sysconfig/clock:这个文件其实也不包含在NTP 的 daemon 当中,因为这个是 Linux 的主要时区设定文件。每次开机后,Linux 会自动的读取这个文件来设定自己系统所默认要显示的时间。

(4)/etc /localtime:这个文件就是"本地端的时间配置文件"。刚刚那个clock 文件里面规定了使用的时间设置文件(ZONE) 为 /usr/share/zoneinfo/Asia/Shanghai ,所以说,这就是本地端的时间了,此时, Linux系统就会将Shanghai那个文件另存为一份 /etc/localtime文件,所以未来我们的时间显示就会以Beijing那个时间设定文件为准。

下面重点介绍 /etc/ntp.conf文件的设置。在 NTP Server 的设定上,建议不要对Internet 无限制的开放,尽量仅提供局域网内部的 Client 端联机进行网络校时。此外,NTP Server 总也是需要网络上面较为准确的主机来自行更新自己的时间啊,所以在我们的 NTP Server 上面也要找一部最靠近自己的 Time Server 来进行自我校正。事实上, NTP 这个服务也是 Server/Client 的一种模式。

[root@linux ~]# vi /etc/ntp.conf 
# 1. 关于权限设定部分 
#  权限的设定主要以 restrict 这个参数来设定,主要的语法为: 
#   restrict IP mask netmask_IP parameter 
#   其中 IP 可以是软件地址,也可以是 default ,default 就类似 0.0.0.0 
#  至于 paramter 则有: 
#   ignore :关闭所有的 NTP 联机服务 
#   nomodify:表示 Client 端不能更改 Server 端的时间参数,不过Client 端仍然可以透过 Server 端来进行网络校时。

#   notrust :该 Client 除非通过认证,否则该 Client 来源将被视为不信任网域 
#   noquery :不提供 Client 端的时间查询

#   notrap :不提供trap这个远程事件登入

#  如果 paramter 完全没有设定,那就表示该 IP (或网域)"没有任何限制"

restrict default nomodify notrap noquery # 关闭所有的 NTP 要求封包

restrict 127.0.0.1    #这是允许本机查询

restrict 192.168.0.1 mask 255.255.255.0 nomodify

#在192.168.0.1/24网段内的服务器就可以通过这台NTP Server进行时间同步了 
# 2. 上层主机的设定 
#  要设定上层主机主要以 server 这个参数来设定,语法为:
#  server [IP|HOST Name] [prefer]
#  Server 后面接的就是上层 Time Server,而如果 Server 参数

# 后面加上 perfer 的话,那表示我们的 NTP 主机主要以该部主机来

# 作为时间校正的对应。另外,为了解决更新时间封包的传送延迟动作,

#  所以可以使用 driftfile 来规定我们的主机 
#  在与 Time Server 沟通时所花费的时间,可以记录在 driftfile  
#  后面接的文件内,例如下面的范例中,我们的 NTP server 与  
#  cn.pool.ntp.org联机时所花费的时间会记录在 /etc/ntp/drift文件内 
server 0.pool.ntp.org

server 1.pool.ntp.org

server 2.pool.ntp.org

server cn.pool.ntp.org prefer

#其他设置值,以系统默认值即可

server  127.127.1.0     # local clock

fudge   127.127.1.0 stratum 10

driftfile /var/lib/ntp/drift
broadcastdelay  0.008

keys /etc/ntp/keys
ログイン後にコピー

总结一下,restrict用来设置访问权限,server用来设置上层时间服务器,driftfile用来设置保存漂移时间的文件。

4.4 ntpd服务的启动与查询

在启动NTP服务前,先对提供服务的这台主机手动的校正一次时间(因为启动服务器,端口会被服务端占用,就不能手动同步时间了)。

[root@node1 ~]# ntpdate cn.pool.ntp.org
25 Feb 21:10:52 ntpdate[9549]: adjust time server 202.112.31.197 offset 0.000101 sec
ログイン後にコピー

然后,启动ntpd服务:

[root@node1 ~]# /etc/init.d/ntpd start
Starting ntpd: [ OK ]
[root@node1 ~]# date
Tue Feb 25 21:11:07 CST 2014
ログイン後にコピー

查看端口(ntpd服务使用UDP的123端口):

[root@node1 ~]# netstat -ln |grep :123
udp 0 0 12.12.12.100:123 0.0.0.0:*
udp 0 0 192.168.0.100:123 0.0.0.0:*
udp 0 0 172.18.226.174:123 0.0.0.0:*
udp 0 0 10.10.10.100:123 0.0.0.0:*
udp 0 0 127.0.0.1:123 0.0.0.0:*
udp 0 0 0.0.0.0:123 0.0.0.0:*
udp 0 0 fe80::225:90ff:fe98:61ff:123 :::*
udp 0 0 fe80::225:90ff:fe98:61fe:123 :::*
udp 0 0 fe80::202:c903:1b:afa1:123 :::*
udp 0 0 ::1:123 :::*
udp 0 0 :::123 :::*
ログイン後にコピー

如何确认我们的NTP服务器已经更新了自己的时间呢?

[root@node1 ~]# ntpstat
synchronised to NTP server (202.120.2.101) at stratum 4
time correct to within 557 ms
polling server every 64 s
# 该指令可列出NTP服务器是否与上层联机。由上述输出结果可知,时间校正约
# 为557*10(-6)秒,且每隔64秒会主动更新时间。
ログイン後にコピー

常见的错误:

unsynchronized time server re-starting polling server every 64 s
// 或者
25 Apr 15:30:17 ntpdate[11520]: no server suitable for synchronization found
ログイン後にコピー

其实,这不是一个错误。而是由于每次重启NTP服务器之后大约要3-5分钟客户端才能与server建立正常的通讯连接。当此时用客户端连接服务端就会报这样的信息。一般等待几分钟就可以了。

[root@node1 ~] # ntptrace –n
127.0.0.1:stratum 11, offset 0.000000,synch distance 0.950951
222.73.214.125:stratum 2,offset –0.000787,synch distance 0.108575
209.81.9.7:stratum 1,offset 0.000028,synch distance 0.00436,refid &#39;GPS&#39;
# 这个指令可以列出目前NTP服务器(第一层)与上层NTP服务器(第二层)
# 彼此之间的关系,注意:该命令需要安装ntp-perl包
ログイン後にコピー

ntpq命令:

[root@node1 ~]# ntpq -p
ログイン後にコピー

Linux の時刻同期コマンドとは何ですか?

指令"ntpq -p"可以列出目前我们的NTP与相关的上层NTP的状态,以上的几个字段的意义如下:

remote:即NTP主机的IP或主机名称。注意最左边的符号,如果由"+“则代表目前正在作用钟的上层NTP,如果是”*"则表示也有连上线,不过是作为次要联机的NTP主机。

 refid:参考的上一层NTP主机的地址
 st:即stratum阶层
 when:几秒前曾做过时间同步更新的操作
 poll:下次更新在几秒之后
 reach:已经向上层NTP服务器要求更新的次数
 delay:网络传输过程钟延迟的时间
 offset:时间补偿的结果
 jitter:Linux系统时间与BIOS硬件时间的差异时间
ログイン後にコピー

最后提及一点,ntp服务默认只会同步系统时间。如果想要让ntp同时同步硬件时间,可以设置/etc/sysconfig/ntpd 文件。

在/etc/sysconfig/ntpd文件中,添加 SYNC_HWCLOCK=yes 这样,就可以让硬件时间与系统时间一起同步。

相关推荐:《Linux视频教程

以上がLinux の時刻同期コマンドとは何ですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

CentosとUbuntuの違い CentosとUbuntuの違い Apr 14, 2025 pm 09:09 PM

Centosとubuntuの重要な違いは次のとおりです。起源(CentosはRed Hat、for Enterprises、UbuntuはDebianに由来します。個人用のDebianに由来します)、パッケージ管理(CentosはYumを使用し、安定性に焦点を当てます。チュートリアルとドキュメント)、使用(Centosはサーバーに偏っています。Ubuntuはサーバーやデスクトップに適しています)、その他の違いにはインストールのシンプルさが含まれます(Centos is Thin)

Centosをインストールする方法 Centosをインストールする方法 Apr 14, 2025 pm 09:03 PM

Centosのインストール手順:ISO画像をダウンロードし、起動可能なメディアを燃やします。起動してインストールソースを選択します。言語とキーボードのレイアウトを選択します。ネットワークを構成します。ハードディスクをパーティション化します。システムクロックを設定します。ルートユーザーを作成します。ソフトウェアパッケージを選択します。インストールを開始します。インストールが完了した後、ハードディスクから再起動して起動します。

メンテナンスを停止した後のCentosの選択 メンテナンスを停止した後のCentosの選択 Apr 14, 2025 pm 08:51 PM

Centosは廃止されました、代替品には次のものが含まれます。1。RockyLinux(最高の互換性)。 2。アルマリン(Centosと互換性); 3。Ubuntuサーバー(設定が必要); 4。RedHat Enterprise Linux(コマーシャルバージョン、有料ライセンス); 5。OracleLinux(CentosとRhelと互換性があります)。移行する場合、考慮事項は次のとおりです。互換性、可用性、サポート、コスト、およびコミュニティサポート。

Dockerデスクトップの使用方法 Dockerデスクトップの使用方法 Apr 15, 2025 am 11:45 AM

Dockerデスクトップの使用方法は? Dockerデスクトップは、ローカルマシンでDockerコンテナを実行するためのツールです。使用する手順には次のものがあります。1。Dockerデスクトップをインストールします。 2。Dockerデスクトップを開始します。 3。Docker Imageを作成します(DockerFileを使用); 4. Docker画像をビルド(Docker Buildを使用); 5。Dockerコンテナを実行します(Docker Runを使用)。

Dockerの原則の詳細な説明 Dockerの原則の詳細な説明 Apr 14, 2025 pm 11:57 PM

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

Centosがメンテナンスを停止した後の対処方法 Centosがメンテナンスを停止した後の対処方法 Apr 14, 2025 pm 08:48 PM

CentOSが停止した後、ユーザーは次の手段を採用して対処できます。Almalinux、Rocky Linux、Centosストリームなどの互換性のある分布を選択します。商業分布に移行する:Red Hat Enterprise Linux、Oracle Linuxなど。 Centos 9ストリームへのアップグレード:ローリングディストリビューション、最新のテクノロジーを提供します。 Ubuntu、Debianなど、他のLinuxディストリビューションを選択します。コンテナ、仮想マシン、クラウドプラットフォームなどの他のオプションを評価します。

Docker画像が失敗した場合はどうすればよいですか Docker画像が失敗した場合はどうすればよいですか Apr 15, 2025 am 11:21 AM

障害のあるDocker画像ビルドのトラブルシューティング手順:DockerFileの構文と依存関係バージョンを確認します。ビルドコンテキストに必要なソースコードと依存関係が含まれているかどうかを確認します。エラーの詳細については、ビルドログを表示します。 -targetオプションを使用して、階層フェーズを構築して障害点を識別します。 Dockerエンジンの最新バージョンを使用してください。 -t [image-name]:デバッグモードで画像を作成して、問題をデバッグします。ディスクスペースを確認し、十分であることを確認してください。 Selinuxを無効にして、ビルドプロセスへの干渉を防ぎます。コミュニティプラットフォームに助けを求め、DockerFilesを提供し、より具体的な提案のためにログの説明を作成します。

VSCODEに必要なコンピューター構成 VSCODEに必要なコンピューター構成 Apr 15, 2025 pm 09:48 PM

VSコードシステムの要件:オペレーティングシステム:オペレーティングシステム:Windows 10以降、MACOS 10.12以上、Linux Distributionプロセッサ:最小1.6 GHz、推奨2.0 GHz以上のメモリ:最小512 MB、推奨4 GB以上のストレージスペース:最低250 MB以上:その他の要件を推奨:安定ネットワーク接続、XORG/WAYLAND(Linux)

See all articles