ホームページ データベース mysql チュートリアル mysqlで2つのテーブルをクエリする方法

mysqlで2つのテーブルをクエリする方法

Dec 07, 2021 am 10:51 AM
mysql 複数テーブルのクエリ

2 つのテーブルをクエリする方法: 1. SELECT ステートメントと "CROSS JOIN" キーワードを使用して、クロス結合クエリを実行します。 2. SELECT ステートメントと "INNER JOIN" キーワードを使用して、内部結合クエリを実行します。 ; 3. SELECT ステートメントと「OUTER JOIN」キーワードを使用して、外部結合クエリを実行します。

mysqlで2つのテーブルをクエリする方法

このチュートリアルの動作環境: Windows7 システム、mysql8 バージョン、Dell G3 コンピューター。

リレーショナル データベースではテーブルが関連付けられているため、実際のアプリケーションでは複数テーブルのクエリがよく使用されます。マルチテーブル クエリは、2 つ以上のテーブルを同時にクエリします。

MySQL では、複数テーブルのクエリには主にクロス結合、内部結合、外部結合が含まれます。

MySQL クロス結合

クロス結合 (CROSS JOIN) は、通常、結合されたテーブルのデカルト積を返すために使用されます。

クロスコネクトの構文形式は次のとおりです。

SELECT <字段名> FROM <表1> CROSS JOIN <表2> [WHERE子句]
ログイン後にコピー

または

SELECT <字段名> FROM <表1>, <表2> [WHERE子句]
ログイン後にコピー

構文の説明は次のとおりです。

  • フィールド名: クエリ対象のフィールドの名前。

  • <テーブル 1><テーブル 2>: 相互接続が必要なテーブルの名前。

  • WHERE 句: 相互接続のクエリ条件を設定するために使用されます。

注: 複数のテーブルをクロス結合する場合は、FROM の後に CROSS JOIN または , を連続して使用します。上記 2 つの構文の戻り結果は同じですが、最初の構文が公式に推奨されている標準的な記述方法です。

接続したテーブル間に関係がない場合は、WHERE句を省略しますが、このとき返される結果は2つのテーブルのデカルト積となり、返される結果の数はその乗算になります。 2 つのテーブルのデータ行。各テーブルが 1000 行ある場合、返される結果の数は 1000×1000 = 1000000 行となり、データ量が非常に膨大になることに注意してください。

例:

学生情報テーブルと科目情報テーブルをクエリし、デカルト積を取得します。

学生情報テーブルと科目テーブル間の相互接続後の実行結果の観察を容易にするために、最初にこれら 2 つのテーブルのデータを個別にクエリし、次に相互接続クエリを実行します。

1) tb_students_info テーブルのデータをクエリします。SQL ステートメントと実行結果は次のとおりです:

mysql> SELECT * FROM tb_students_info;
+----+--------+------+------+--------+-----------+
| id | name   | age  | sex  | height | course_id |
+----+--------+------+------+--------+-----------+
|  1 | Dany   |   25 | 男   |    160 |         1 |
|  2 | Green  |   23 | 男   |    158 |         2 |
|  3 | Henry  |   23 | 女   |    185 |         1 |
|  4 | Jane   |   22 | 男   |    162 |         3 |
|  5 | Jim    |   24 | 女   |    175 |         2 |
|  6 | John   |   21 | 女   |    172 |         4 |
|  7 | Lily   |   22 | 男   |    165 |         4 |
|  8 | Susan  |   23 | 男   |    170 |         5 |
|  9 | Thomas |   22 | 女   |    178 |         5 |
| 10 | Tom    |   23 | 女   |    165 |         5 |
+----+--------+------+------+--------+-----------+
10 rows in set (0.00 sec)
ログイン後にコピー

2) tb_course テーブルのデータをクエリします。SQL ステートメントと実行結果は次のとおりです。

mysql> SELECT * FROM tb_course;
+----+-------------+
| id | course_name |
+----+-------------+
|  1 | Java        |
|  2 | MySQL       |
|  3 | Python      |
|  4 | Go          |
|  5 | C++         |
+----+-------------+
5 rows in set (0.00 sec)
ログイン後にコピー

3) CROSS JOIN を使用して 2 つのテーブルのデカルト積をクエリします。SQL ステートメントと実行結果は次のとおりです:

mysql> SELECT * FROM tb_course CROSS JOIN tb_students_info;
+----+-------------+----+--------+------+------+--------+-----------+
| id | course_name | id | name   | age  | sex  | height | course_id |
+----+-------------+----+--------+------+------+--------+-----------+
|  1 | Java        |  1 | Dany   |   25 | 男   |    160 |         1 |
|  2 | MySQL       |  1 | Dany   |   25 | 男   |    160 |         1 |
|  3 | Python      |  1 | Dany   |   25 | 男   |    160 |         1 |
|  4 | Go          |  1 | Dany   |   25 | 男   |    160 |         1 |
|  5 | C++         |  1 | Dany   |   25 | 男   |    160 |         1 |
|  1 | Java        |  2 | Green  |   23 | 男   |    158 |         2 |
|  2 | MySQL       |  2 | Green  |   23 | 男   |    158 |         2 |
|  3 | Python      |  2 | Green  |   23 | 男   |    158 |         2 |
|  4 | Go          |  2 | Green  |   23 | 男   |    158 |         2 |
|  5 | C++         |  2 | Green  |   23 | 男   |    158 |         2 |
|  1 | Java        |  3 | Henry  |   23 | 女   |    185 |         1 |
|  2 | MySQL       |  3 | Henry  |   23 | 女   |    185 |         1 |
|  3 | Python      |  3 | Henry  |   23 | 女   |    185 |         1 |
|  4 | Go          |  3 | Henry  |   23 | 女   |    185 |         1 |
|  5 | C++         |  3 | Henry  |   23 | 女   |    185 |         1 |
|  1 | Java        |  4 | Jane   |   22 | 男   |    162 |         3 |
|  2 | MySQL       |  4 | Jane   |   22 | 男   |    162 |         3 |
|  3 | Python      |  4 | Jane   |   22 | 男   |    162 |         3 |
|  4 | Go          |  4 | Jane   |   22 | 男   |    162 |         3 |
|  5 | C++         |  4 | Jane   |   22 | 男   |    162 |         3 |
|  1 | Java        |  5 | Jim    |   24 | 女   |    175 |         2 |
|  2 | MySQL       |  5 | Jim    |   24 | 女   |    175 |         2 |
|  3 | Python      |  5 | Jim    |   24 | 女   |    175 |         2 |
|  4 | Go          |  5 | Jim    |   24 | 女   |    175 |         2 |
|  5 | C++         |  5 | Jim    |   24 | 女   |    175 |         2 |
|  1 | Java        |  6 | John   |   21 | 女   |    172 |         4 |
|  2 | MySQL       |  6 | John   |   21 | 女   |    172 |         4 |
|  3 | Python      |  6 | John   |   21 | 女   |    172 |         4 |
|  4 | Go          |  6 | John   |   21 | 女   |    172 |         4 |
|  5 | C++         |  6 | John   |   21 | 女   |    172 |         4 |
|  1 | Java        |  7 | Lily   |   22 | 男   |    165 |         4 |
|  2 | MySQL       |  7 | Lily   |   22 | 男   |    165 |         4 |
|  3 | Python      |  7 | Lily   |   22 | 男   |    165 |         4 |
|  4 | Go          |  7 | Lily   |   22 | 男   |    165 |         4 |
|  5 | C++         |  7 | Lily   |   22 | 男   |    165 |         4 |
|  1 | Java        |  8 | Susan  |   23 | 男   |    170 |         5 |
|  2 | MySQL       |  8 | Susan  |   23 | 男   |    170 |         5 |
|  3 | Python      |  8 | Susan  |   23 | 男   |    170 |         5 |
|  4 | Go          |  8 | Susan  |   23 | 男   |    170 |         5 |
|  5 | C++         |  8 | Susan  |   23 | 男   |    170 |         5 |
|  1 | Java        |  9 | Thomas |   22 | 女   |    178 |         5 |
|  2 | MySQL       |  9 | Thomas |   22 | 女   |    178 |         5 |
|  3 | Python      |  9 | Thomas |   22 | 女   |    178 |         5 |
|  4 | Go          |  9 | Thomas |   22 | 女   |    178 |         5 |
|  5 | C++         |  9 | Thomas |   22 | 女   |    178 |         5 |
|  1 | Java        | 10 | Tom    |   23 | 女   |    165 |         5 |
|  2 | MySQL       | 10 | Tom    |   23 | 女   |    165 |         5 |
|  3 | Python      | 10 | Tom    |   23 | 女   |    165 |         5 |
|  4 | Go          | 10 | Tom    |   23 | 女   |    165 |         5 |
|  5 | C++         | 10 | Tom    |   23 | 女   |    165 |         5 |
+----+-------------+----+--------+------+------+--------+-----------+
50 rows in set (0.00 sec)
ログイン後にコピー

実行結果からわかります。 tb_course テーブルと tb_students_info テーブルの相互結合クエリの後、50 個の項目が返されたことがわかります。ご想像のとおり、テーブルに大量のデータがある場合、得られる実行結果は非常に長くなり、得られる実行結果はあまり意味がありません。したがって、クロス接続による複数テーブルのクエリのこの方法は一般的には使用されず、この種のクエリは避けるようにする必要があります。

MySQL 内部接続

内部 JOIN は主に、接続条件を設定することでクエリ結果から特定のデータを削除します。簡単に言うと、条件式はクロスコネクト内の特定のデータ行を削除するために使用されます。

内部結合では、INNER JOIN キーワードを使用して 2 つのテーブルを接続し、ON 句を使用して接続条件を設定します。結合条件がない場合、INNER JOINCROSS JOIN は構文的に同等であり、交換可能です。

内部接続の構文形式は次のとおりです:

SELECT <字段名> FROM <表1> INNER JOIN <表2> [ON子句]
ログイン後にコピー

構文の説明は次のとおりです:

  • フィールド名: フィールドの名前尋ねられること。

  • <テーブル 1><テーブル 2>: 内部結合が必要なテーブルの名前。

  • INNER JOIN: INNER キーワードは内部結合では省略でき、JOIN キーワードのみが使用されます。

  • ON 句: 内部結合の接続条件を設定するために使用されます。

INNER JOIN では、WHERE 句を使用して接続条件を指定することもできますが、INNER JOIN ... ON 構文は公式の標準的な記述方法であり、WHERE 句は場合によってはクエリのパフォーマンスに影響します。

複数のテーブルを接続する場合は、FROM の後に INNER JOIN または JOIN を続けて使用します。

内部結合では、2 つ以上のテーブルをクエリできます。皆様に理解を深めていただくために、当面は 2 つのテーブル間の接続クエリについてのみ説明します。

例:

mysql> SELECT s.name,c.course_name FROM tb_students_info s INNER JOIN tb_course c 
    -> ON s.course_id = c.id;
+--------+-------------+
| name   | course_name |
+--------+-------------+
| Dany   | Java        |
| Green  | MySQL       |
| Henry  | Java        |
| Jane   | Python      |
| Jim    | MySQL       |
| John   | Go          |
| Lily   | Go          |
| Susan  | C++         |
| Thomas | C++         |
| Tom    | C++         |
+--------+-------------+
10 rows in set (0.00 sec)
ログイン後にコピー

ここのクエリ文では、2 つのテーブル間の関係を INNER JOIN で指定し、接続の条件を ON 句で指定しています。

注: 複数のテーブルをクエリする場合は、SELECT ステートメントの後にフィールドがどのテーブルからのものであるかを指定する必要があります。そのため、複数のテーブルをクエリする場合、SELECT文以降の書き方はテーブル名.列名となります。さらに、テーブル名が非常に長い場合は、テーブルの別名を設定して、テーブルの別名と列名を SELECT ステートメントの直後に記述することもできます。

MySQL 外部結合

内部結合のクエリ結果は、接続条件を満たすすべてのレコードであり、外部結合は最初に分割されます。接続されたテーブルはベース テーブルと参照テーブルであり、ベース テーブルをベースとして使用して、条件を満たすレコードと条件を満たさないレコードを返します。

外连接可以分为左外连接和右外连接,下面根据实例分别介绍左外连接和右外连接。

左连接

左外连接又称为左连接,使用 LEFT OUTER JOIN 关键字连接两个表,并使用 ON 子句来设置连接条件。

左连接的语法格式如下:

SELECT <字段名> FROM <表1> LEFT OUTER JOIN <表2> <ON子句>
ログイン後にコピー

语法说明如下。

  • 字段名:需要查询的字段名称。

  • <表1><表2>:需要左连接的表名。

  • LEFT OUTER JOIN:左连接中可以省略 OUTER 关键字,只使用关键字 LEFT JOIN。

  • ON 子句:用来设置左连接的连接条件,不能省略。

上述语法中,“表1”为基表,“表2”为参考表。左连接查询时,可以查询出“表1”中的所有记录和“表2”中匹配连接条件的记录。如果“表1”的某行在“表2”中没有匹配行,那么在返回结果中,“表2”的字段值均为空值(NULL)。

示例:

在进行左连接查询之前,我们先查看 tb_course 和 tb_students_info 两张表中的数据。SQL 语句和运行结果如下。

mysql> SELECT * FROM tb_course;
+----+-------------+
| id | course_name |
+----+-------------+
|  1 | Java        |
|  2 | MySQL       |
|  3 | Python      |
|  4 | Go          |
|  5 | C++         |
|  6 | HTML        |
+----+-------------+
6 rows in set (0.00 sec)


mysql> SELECT * FROM tb_students_info;
+----+--------+------+------+--------+-----------+
| id | name   | age  | sex  | height | course_id |
+----+--------+------+------+--------+-----------+
|  1 | Dany   |   25 | 男   |    160 |         1 |
|  2 | Green  |   23 | 男   |    158 |         2 |
|  3 | Henry  |   23 | 女   |    185 |         1 |
|  4 | Jane   |   22 | 男   |    162 |         3 |
|  5 | Jim    |   24 | 女   |    175 |         2 |
|  6 | John   |   21 | 女   |    172 |         4 |
|  7 | Lily   |   22 | 男   |    165 |         4 |
|  8 | Susan  |   23 | 男   |    170 |         5 |
|  9 | Thomas |   22 | 女   |    178 |         5 |
| 10 | Tom    |   23 | 女   |    165 |         5 |
| 11 | LiMing |   22 | 男   |    180 |         7 |
+----+--------+------+------+--------+-----------+
11 rows in set (0.00 sec)
ログイン後にコピー

在 tb_students_info 表和 tb_course 表中查询所有学生姓名和相对应的课程名称,包括没有课程的学生,SQL 语句和运行结果如下。

mysql> SELECT s.name,c.course_name FROM tb_students_info s LEFT OUTER JOIN tb_course c 
    -> ON s.`course_id`=c.`id`;
+--------+-------------+
| name   | course_name |
+--------+-------------+
| Dany   | Java        |
| Henry  | Java        |
| NULL   | Java        |
| Green  | MySQL       |
| Jim    | MySQL       |
| Jane   | Python      |
| John   | Go          |
| Lily   | Go          |
| Susan  | C++         |
| Thomas | C++         |
| Tom    | C++         |
| LiMing | NULL        |
+--------+-------------+
12 rows in set (0.00 sec)
ログイン後にコピー

可以看到,运行结果显示了 12 条记录,name 为 LiMing 的学生目前没有课程,因为对应的 tb_course 表中没有该学生的课程信息,所以该条记录只取出了 tb_students_info 表中相应的值,而从 tb_course 表中取出的值为 NULL。

右连接

右外连接又称为右连接,右连接是左连接的反向连接。使用 RIGHT OUTER JOIN 关键字连接两个表,并使用 ON 子句来设置连接条件。

右连接的语法格式如下:

SELECT <字段名> FROM <表1> RIGHT OUTER JOIN <表2> <ON子句>
ログイン後にコピー

语法说明如下。

  • 字段名:需要查询的字段名称。

  • <表1><表2>:需要右连接的表名。

  • RIGHT OUTER JOIN:右连接中可以省略 OUTER 关键字,只使用关键字 RIGHT JOIN。

  • ON 子句:用来设置右连接的连接条件,不能省略。

与左连接相反,右连接以“表2”为基表,“表1”为参考表。右连接查询时,可以查询出“表2”中的所有记录和“表1”中匹配连接条件的记录。如果“表2”的某行在“表1”中没有匹配行,那么在返回结果中,“表1”的字段值均为空值(NULL)。

示例:

在 tb_students_info 表和 tb_course 表中查询所有课程,包括没有学生的课程,SQL 语句和运行结果如下。

mysql> SELECT s.name,c.course_name FROM tb_students_info s RIGHT OUTER JOIN tb_course c 
    -> ON s.`course_id`=c.`id`;
+--------+-------------+
| name   | course_name |
+--------+-------------+
| Dany   | Java        |
| Green  | MySQL       |
| Henry  | Java        |
| Jane   | Python      |
| Jim    | MySQL       |
| John   | Go          |
| Lily   | Go          |
| Susan  | C++         |
| Thomas | C++         |
| Tom    | C++         |
| NULL   | HTML        |
+--------+-------------+
11 rows in set (0.00 sec)
ログイン後にコピー

可以看到,结果显示了 11 条记录,名称为 HTML 的课程目前没有学生,因为对应的 tb_students_info 表中并没有该学生的信息,所以该条记录只取出了 tb_course 表中相应的值,而从 tb_students_info 表中取出的值为 NULL。

多个表左/右连接时,在 ON 子句后连续使用 LEFT/RIGHT OUTER JOIN 或 LEFT/RIGHT JOIN 即可。

使用外连接查询时,一定要分清需要查询的结果,是需要显示左表的全部记录还是右表的全部记录,然后选择相应的左连接和右连接。

【相关推荐:mysql视频教程

以上がmysqlで2つのテーブルをクエリする方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

MySQLユーザーとデータベースの関係 MySQLユーザーとデータベースの関係 Apr 08, 2025 pm 07:15 PM

MySQLデータベースでは、ユーザーとデータベースの関係は、アクセス許可と表によって定義されます。ユーザーには、データベースにアクセスするためのユーザー名とパスワードがあります。許可は助成金コマンドを通じて付与され、テーブルはCreate Tableコマンドによって作成されます。ユーザーとデータベースの関係を確立するには、データベースを作成し、ユーザーを作成してから許可を付与する必要があります。

MySQL:初心者向けのデータ管理の容易さ MySQL:初心者向けのデータ管理の容易さ Apr 09, 2025 am 12:07 AM

MySQLは、インストールが簡単で、強力で管理しやすいため、初心者に適しています。 1.さまざまなオペレーティングシステムに適した、単純なインストールと構成。 2。データベースとテーブルの作成、挿入、クエリ、更新、削除などの基本操作をサポートします。 3.参加オペレーションやサブクエリなどの高度な機能を提供します。 4.インデックス、クエリの最適化、テーブルパーティション化により、パフォーマンスを改善できます。 5。データのセキュリティと一貫性を確保するために、バックアップ、リカバリ、セキュリティ対策をサポートします。

RDS MySQL Redshift Zero ETLとの統合 RDS MySQL Redshift Zero ETLとの統合 Apr 08, 2025 pm 07:06 PM

データ統合の簡素化:AmazonrdsmysqlとRedshiftのゼロETL統合効率的なデータ統合は、データ駆動型組織の中心にあります。従来のETL(抽出、変換、負荷)プロセスは、特にデータベース(AmazonrdsmysQlなど)をデータウェアハウス(Redshiftなど)と統合する場合、複雑で時間がかかります。ただし、AWSは、この状況を完全に変えたゼロETL統合ソリューションを提供し、RDSMYSQLからRedshiftへのデータ移行のための簡略化されたほぼリアルタイムソリューションを提供します。この記事では、RDSMysQl Zero ETLのRedshiftとの統合に飛び込み、それがどのように機能するか、それがデータエンジニアと開発者にもたらす利点を説明します。

MySQLのユーザー名とパスワードを入力する方法 MySQLのユーザー名とパスワードを入力する方法 Apr 08, 2025 pm 07:09 PM

MySQLのユーザー名とパスワードを入力するには:1。ユーザー名とパスワードを決定します。 2。データベースに接続します。 3.ユーザー名とパスワードを使用して、クエリとコマンドを実行します。

MySQLのクエリ最適化は、特に大規模なデータセットを扱う場合、データベースのパフォーマンスを改善するために不可欠です MySQLのクエリ最適化は、特に大規模なデータセットを扱う場合、データベースのパフォーマンスを改善するために不可欠です Apr 08, 2025 pm 07:12 PM

1.正しいインデックスを使用して、データの量を削減してデータ検索をスピードアップしました。テーブルの列を複数回検索する場合は、その列のインデックスを作成します。あなたまたはあなたのアプリが基準に従って複数の列からのデータが必要な場合、複合インデックス2を作成します2。選択した列のみを避けます。必要な列のすべてを選択すると、より多くのサーバーメモリを使用する場合にのみサーバーが遅くなり、たとえばテーブルにはcreated_atやupdated_atやupdated_atなどの列が含まれます。

NAVICATでデータベースパスワードを取得できますか? NAVICATでデータベースパスワードを取得できますか? Apr 08, 2025 pm 09:51 PM

NAVICAT自体はデータベースパスワードを保存せず、暗号化されたパスワードのみを取得できます。解決策:1。パスワードマネージャーを確認します。 2。NAVICATの「パスワードを記憶する」機能を確認します。 3.データベースパスワードをリセットします。 4.データベース管理者に連絡してください。

酸性特性を理解する:信頼できるデータベースの柱 酸性特性を理解する:信頼できるデータベースの柱 Apr 08, 2025 pm 06:33 PM

データベース酸属性の詳細な説明酸属性は、データベーストランザクションの信頼性と一貫性を確保するための一連のルールです。データベースシステムがトランザクションを処理する方法を定義し、システムのクラッシュ、停電、または複数のユーザーの同時アクセスの場合でも、データの整合性と精度を確保します。酸属性の概要原子性:トランザクションは不可分な単位と見なされます。どの部分も失敗し、トランザクション全体がロールバックされ、データベースは変更を保持しません。たとえば、銀行の譲渡が1つのアカウントから控除されているが別のア​​カウントに増加しない場合、操作全体が取り消されます。 TRANSACTION; updateaccountssetbalance = balance-100wh

マスターSQL制限条項:クエリの行数を制御する マスターSQL制限条項:クエリの行数を制御する Apr 08, 2025 pm 07:00 PM

sqllimit句:クエリ結果の行数を制御します。 SQLの制限条項は、クエリによって返される行数を制限するために使用されます。これは、大規模なデータセット、パジネートされたディスプレイ、テストデータを処理する場合に非常に便利であり、クエリ効率を効果的に改善することができます。構文の基本的な構文:SelectColumn1、column2、... FromTable_nameLimitnumber_of_rows; number_of_rows:返された行の数を指定します。オフセットの構文:SelectColumn1、column2、... FromTable_nameLimitoffset、number_of_rows; offset:skip

See all articles