目次
前提条件
最終考察
ホームページ バックエンド開発 Python チュートリアル Pythonでパラメータを解析する3つの方法を詳しく解説

Pythonでパラメータを解析する3つの方法を詳しく解説

Jul 20, 2022 pm 02:22 PM
python

この記事では、Python に関する関連知識を提供します。主に、パラメーターを解析する 3 つの方法に関連する問題をまとめています。最初のオプションは、コマンド ラインに特に使用される、人気のある Python モジュールである argparse を使用することです。解析; もう 1 つの方法は、すべてのハイパーパラメータを配置できる JSON ファイルを読み取ることです。3 番目のあまり知られていない方法は、YAML ファイルを使用することです。一緒に見てみましょう。役立つことを願っています。全員が役に立ちます。

Pythonでパラメータを解析する3つの方法を詳しく解説

[関連する推奨事項: Python3 ビデオ チュートリアル ]

今日共有する内容の主な目的は、コマンド ラインとコード効率を向上させるための設定ファイル

それでは、いきましょう!

機械学習のパラメータ調整プロセスを練習に使用します。3 つの方法から選択できます。最初のオプションは、コマンド ライン解析専用の人気のある Python モジュールである argparse を使用することです。もう 1 つは、すべてのハイパーパラメータを配置できる JSON ファイルを読み取ることです。3 番目のオプションもあまり知られていません。解決策は、YAML ファイルを使用することです。興味があるなら、始めましょう!

前提条件

以下のコードでは、非常に効率的な統合 Python 開発環境である Visual Studio Code を使用します。このツールの利点は、拡張機能をインストールすることであらゆるプログラミング言語をサポートし、ターミナルを統合し、Kaggle の Shared Bicycle Dataset## を使用して、多数の Python スクリプトと Jupyter ノートブック

データセットを操作できることです

#argparse の使用

Pythonでパラメータを解析する3つの方法を詳しく解説 上の図に示すように、小さなプロジェクトを整理するための標準構造があります。

    データが含まれます フォルダーを設定します名前付きの data
  • train.py ファイル
  • options.py ハイパーパラメータを指定するファイル
まず、ファイル train.py を作成します。データをインポートし、トレーニング データでモデルをトレーニングし、テスト セットで評価する基本手順:

import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error

from options import train_options

df = pd.read_csv('data\hour.csv')
print(df.head())
opt = train_options()

X=df.drop(['instant','dteday','atemp','casual','registered','cnt'],axis=1).values
y =df['cnt'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

if opt.normalize == True:
    scaler = StandardScaler()
    X = scaler.fit_transform(X)
    
rf = RandomForestRegressor(n_estimators=opt.n_estimators,max_features=opt.max_features,max_depth=opt.max_depth)
model = rf.fit(X_train,y_train)
y_pred = model.predict(X_test)
rmse = np.sqrt(mean_squared_error(y_pred, y_test))
mae = mean_absolute_error(y_pred, y_test)
print("rmse: ",rmse)
print("mae: ",mae)
ログイン後にコピー
コードでは、ファイル内の options.py train_options 関数に含まれるファイルもインポートします。後者のファイルは、train.py で考慮されるハイパーパラメータを変更できる Python ファイルです。

import argparse

def train_options():
    parser = argparse.ArgumentParser()
    parser.add_argument("--normalize", default=True, type=bool, help='maximum depth')
    parser.add_argument("--n_estimators", default=100, type=int, help='number of estimators')
    parser.add_argument("--max_features", default=6, type=int, help='maximum of features',)
    parser.add_argument("--max_depth", default=5, type=int,help='maximum depth')
    opt = parser.parse_args()
    return opt
ログイン後にコピー
この例では、コマンド ライン引数を解析するときに非常に人気のある argparse ライブラリを使用します。まず、パーサーを初期化してから、アクセスするパラメーターを追加します。

これはコードの実行例です:

python train.py
ログイン後にコピー

Pythonでパラメータを解析する3つの方法を詳しく解説 ハイパーパラメータのデフォルト値を変更するには、2 つの方法があります。最初のオプションは、options.py ファイルに異なるデフォルト値を設定することです。別のオプションは、コマンド ラインからハイパーパラメータ値を渡すことです。

python train.py --n_estimators 200
ログイン後にコピー
変更するハイパーパラメータの名前と対応する値を指定する必要があります。

python train.py --n_estimators 200 --max_depth 7
ログイン後にコピー
JSON ファイルの使用

Pythonでパラメータを解析する3つの方法を詳しく解説 以前と同様に、同様のファイル構造を維持できます。この場合、options.py ファイルを JSON ファイルに置き換えます。つまり、JSON ファイルでハイパーパラメータの値を指定し、train.py ファイルに渡したいと考えます。 JSON ファイルは、キーと値のペアを利用してデータを保存するため、argparse ライブラリに代わる高速かつ直感的な代替手段となります。次に、後で他のコードに渡す必要があるデータを含む options.json ファイルを作成します。

{
"normalize":true,
"n_estimators":100,
"max_features":6,
"max_depth":5 
}
ログイン後にコピー
上でわかるように、これは Python 辞書に非常に似ています。ただし、辞書とは異なり、テキスト/文字列形式のデータが含まれています。さらに、構文が若干異なる一般的なデータ型がいくつかあります。たとえば、ブール値は false/true ですが、Python は False/True を認識します。 JSON で使用できるその他の値は配列であり、角かっこを使用して Python リストとして表されます。

Python で JSON データを操作する利点は、load メソッドを使用して Python 辞書に変換できることです:

f = open("options.json", "rb")
parameters = json.load(f)
ログイン後にコピー
特定の項目にアクセスするには、その項目内で引用符で囲むだけで済みます。角括弧 キー名:

if parameters["normalize"] == True:
    scaler = StandardScaler()
    X = scaler.fit_transform(X)
rf=RandomForestRegressor(n_estimators=parameters["n_estimators"],max_features=parameters["max_features"],max_depth=parameters["max_depth"],random_state=42)
model = rf.fit(X_train,y_train)
y_pred = model.predict(X_test)
ログイン後にコピー
YAML ファイルの使用

Pythonでパラメータを解析する3つの方法を詳しく解説 最後のオプションは、YAML の可能性を活用することです。 JSON ファイルと同様に、YAML ファイルを Python コードで辞書として読み取り、ハイパーパラメータの値にアクセスします。 YAML は人間が判読できるデータ表現言語であり、JSON ファイルのような括弧ではなくダブルスペース文字を使用して階層が表現されます。以下に、options.yaml ファイルの内容を示します。

normalize: True 
n_estimators: 100
max_features: 6
max_depth: 5
ログイン後にコピー
train.py で、options.yaml ファイルを開きます。このファイルは常に、load メソッドを使用して Python 辞書に変換されます。今回は、 yaml ライブラリ インポート先:

import yaml
f = open('options.yaml','rb')
parameters = yaml.load(f, Loader=yaml.FullLoader)
ログイン後にコピー
前と同様に、辞書に必要な構文を使用してハイパーパラメータの値にアクセスできます。

最終考察

設定ファイルは非常に速くコンパイルされますが、argparse では追加する引数ごとに 1 行のコードを記述する必要があります。

したがって、さまざまな状況に応じて最適な方法を選択する必要があります。

たとえば、パラメータにコメントを追加する必要がある場合、JSON はコメントを許可しないため適していません。YAML は適していません。 argparse が適しているかもしれません。

【関連する推奨事項: Python3 ビデオ チュートリアル ]

以上がPythonでパラメータを解析する3つの方法を詳しく解説の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

PHPおよびPython:コードの例と比較 PHPおよびPython:コードの例と比較 Apr 15, 2025 am 12:07 AM

PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

Python vs. JavaScript:コミュニティ、ライブラリ、リソース Python vs. JavaScript:コミュニティ、ライブラリ、リソース Apr 15, 2025 am 12:16 AM

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

Dockerの原則の詳細な説明 Dockerの原則の詳細な説明 Apr 14, 2025 pm 11:57 PM

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

Visual StudioコードはPythonで使用できますか Visual StudioコードはPythonで使用できますか Apr 15, 2025 pm 08:18 PM

VSコードはPythonの書き込みに使用でき、Pythonアプリケーションを開発するための理想的なツールになる多くの機能を提供できます。ユーザーは以下を可能にします。Python拡張機能をインストールして、コードの完了、構文の強調表示、デバッグなどの関数を取得できます。デバッガーを使用して、コードを段階的に追跡し、エラーを見つけて修正します。バージョンコントロールのためにGitを統合します。コードフォーマットツールを使用して、コードの一貫性を維持します。糸くずツールを使用して、事前に潜在的な問題を発見します。

ターミナルVSCODEでプログラムを実行する方法 ターミナルVSCODEでプログラムを実行する方法 Apr 15, 2025 pm 06:42 PM

VSコードでは、次の手順を通じて端末でプログラムを実行できます。コードを準備し、統合端子を開き、コードディレクトリが端末作業ディレクトリと一致していることを確認します。プログラミング言語(pythonのpython your_file_name.pyなど)に従って実行コマンドを選択して、それが正常に実行されるかどうかを確認し、エラーを解決します。デバッガーを使用して、デバッグ効率を向上させます。

Windows 8でコードを実行できます Windows 8でコードを実行できます Apr 15, 2025 pm 07:24 PM

VSコードはWindows 8で実行できますが、エクスペリエンスは大きくない場合があります。まず、システムが最新のパッチに更新されていることを確認してから、システムアーキテクチャに一致するVSコードインストールパッケージをダウンロードして、プロンプトとしてインストールします。インストール後、一部の拡張機能はWindows 8と互換性があり、代替拡張機能を探すか、仮想マシンで新しいWindowsシステムを使用する必要があることに注意してください。必要な拡張機能をインストールして、適切に動作するかどうかを確認します。 Windows 8ではVSコードは実行可能ですが、開発エクスペリエンスとセキュリティを向上させるために、新しいWindowsシステムにアップグレードすることをお勧めします。

VSCODE拡張機能は悪意がありますか? VSCODE拡張機能は悪意がありますか? Apr 15, 2025 pm 07:57 PM

VSコード拡張機能は、悪意のあるコードの隠れ、脆弱性の活用、合法的な拡張機能としての自慰行為など、悪意のあるリスクを引き起こします。悪意のある拡張機能を識別する方法には、パブリッシャーのチェック、コメントの読み取り、コードのチェック、およびインストールに注意してください。セキュリティ対策には、セキュリティ認識、良好な習慣、定期的な更新、ウイルス対策ソフトウェアも含まれます。

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

See all articles