一般的な科学的定義によれば、人工知能は人間に似たコンピューター プログラムです。
一般的な科学的定義によれば、人工知能は人間と同様に動作するコンピューター プログラムであり、人工知能の英語略語は AI であり、シミュレーションのための理論、方法、技術の研究開発です。人間と知性の拡張、拡大 知性の性質を理解し、人間の知性と同様の方法で反応できる新しいインテリジェントマシンを生み出すことを試みる新しい技術科学と応用システム。
このチュートリアルの動作環境: Windows 10 システム、DELL G3 コンピューター。
一般的な科学的定義によると、人工知能は人間と同様に動作するコンピューター プログラムです
人工知能 (Artificial Intelligence)、英語の略称は AI です。監督は難しく、人間の知能をシミュレートし、拡張し拡張するための理論、方法、技術、応用システムを研究開発する新しい技術科学です。
人工知能は、知能の性質を理解し、人間の知能と同様の方法で応答できる新しいインテリジェントな機械を生み出すことを試みるコンピューター サイエンスの一分野です。この分野の研究には、ロボット、言語認識、画像が含まれます。認識、自然言語処理、エキスパートシステムなど人工知能の誕生以来、理論や技術はますます成熟し、応用分野も拡大を続けており、将来的には人工知能がもたらす技術成果は人類の知恵の「入れ物」となることが想像されます。 。人工知能は人間の意識と思考の情報プロセスをシミュレートできます。人工知能は人間の知能ではありませんが、人間と同じように考えることができ、人間の知能を超える可能性もあります。
人工知能は非常に挑戦的な科学であり、この研究に携わる人々はコンピューターの知識、心理学、哲学を理解する必要があります。人工知能は非常に幅広い科学であり、機械学習やコンピューター ビジョンなどのさまざまな分野で構成されています。一般的に言えば、人工知能研究の主な目標は、通常は人間の知能を必要とする複雑な作業を機械に実行できるようにすることです。しかし、時代や人々が異なれば、この「複雑な仕事」に対する理解も異なります。
知識の拡大: 人工知能科学の概要
実践的な応用
マシン ビジョン、フィンガープリント認識、顔認識、網膜認識、虹彩認識、掌紋認識、エキスパートシステム、自動計画、インテリジェント検索、定理証明、ゲーム、自動プログラミング、インテリジェント制御、ロボット工学、言語と画像の理解、遺伝的プログラミングなど。
分野カテゴリ
人工知能は、自然科学と社会科学の交差点に属する限界的な主題です。
#関与分野
哲学と認知科学、数学、神経生理学、心理学、コンピューターサイエンス、情報理論、サイバネティクス、不確実性理論研究範囲
自然言語処理、知識表現、インテリジェント検索、推論、計画、機械学習、知識獲得、組み合わせスケジューリング問題、知覚問題、パターン認識、論理プログラミングおよびソフトコンピューティング、不正確および不確実経営、人工生命、ニューラルネットワーク、複雑系、遺伝的アルゴリズム意識と人工知能
人工知能はその性質上、情報プロセスのシミュレーションです。人間の思考の。 人間の思考をシミュレートするには、人間の脳の構造メカニズムを模倣して「人間の脳に似た」機械を作成する構造シミュレーションと、一時的に停止させる機能シミュレーションの 2 つの方法があります。人間の脳の内部構造は、その機能プロセスからシミュレートされます。現代の電子コンピューターの出現は、人間の脳の思考機能と人間の脳の思考の情報プロセスのシミュレーションです。 脆弱な人工知能は、特に 2008 年の経済危機後、急速に発展し続けています。米国、日本、ヨーロッパは、再産業化を達成するためにロボットを使用することを望んでいます。産業用ロボットは、かつてないほどの速さで開発されており、人工知能とその関連分野の絶え間ない進歩により、人間がやらなければならない多くの仕事がロボットにできるようになりました。 強力な人工知能は現在ボトルネックにあり、科学者と人間の努力が必要です。 関連知識の詳細については、FAQ 列をご覧ください。
以上が一般的な科学的定義によれば、人工知能は人間に似たコンピューター プログラムです。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究

7月5日のこのウェブサイトのニュースによると、グローバルファウンドリーズは今年7月1日にプレスリリースを発行し、自動車とインターネットでの市場シェア拡大を目指してタゴール・テクノロジーのパワー窒化ガリウム(GaN)技術と知的財産ポートフォリオを買収したことを発表した。モノと人工知能データセンターのアプリケーション分野で、より高い効率とより優れたパフォーマンスを探求します。生成 AI などのテクノロジーがデジタル世界で発展を続ける中、窒化ガリウム (GaN) は、特にデータセンターにおいて、持続可能で効率的な電力管理のための重要なソリューションとなっています。このウェブサイトは、この買収中にタゴール・テクノロジーのエンジニアリングチームがGLOBALFOUNDRIESに加わり、窒化ガリウム技術をさらに開発するという公式発表を引用した。 G