ホームページ バックエンド開発 Python チュートリアル Python分析でのnamedtuple関数の使用法

Python分析でのnamedtuple関数の使用法

Sep 01, 2022 pm 02:38 PM
python

【関連する推奨事項: Python3 ビデオ チュートリアル ]

ソース コードの説明:

def namedtuple(typename, field_names, *, rename=False, defaults=None, module=None):
    """Returns a new subclass of tuple with named fields.
    >>> Point = namedtuple('Point', ['x', 'y'])
    >>> Point.__doc__                   # docstring for the new class
    'Point(x, y)'
    >>> p = Point(11, y=22)             # instantiate with positional args or keywords
    >>> p[0] + p[1]                     # indexable like a plain tuple
    33
    >>> x, y = p                        # unpack like a regular tuple
    >>> x, y
    (11, 22)
    >>> p.x + p.y                       # fields also accessible by name
    33
    >>> d = p._asdict()                 # convert to a dictionary
    >>> d['x']
    11
    >>> Point(**d)                      # convert from a dictionary
    Point(x=11, y=22)
    >>> p._replace(x=100)               # _replace() is like str.replace() but targets named fields
    Point(x=100, y=22)
    """
ログイン後にコピー

文法構造:

namedtuple(typename, field_names, *, rename=False, defaults=None, module=None)
ログイン後にコピー
  • typename: は、新しく作成されたタプルの名前を表します。
  • field_names: はタプルの内容です。これはリストのような ['x', 'y']

という名前のタプルであり、タプル リストと同様にキーを使用してアクセスできます(インデックスを使用してアクセスすることもできます)。

collections.namedtuple は、フィールド名と名前付きクラスを含むタプルを構築するために使用できるファクトリ関数です。

名前付きタプルの作成には 2 つのパラメータが必要です。1 つはクラス名、もう 1 つはクラス名です。もう 1 つはクラスの各フィールドの名前です。

対応するフィールドに格納されたデータは、一連のパラメーターの形式でコンストラクターに渡す必要があります (タプル コンストラクターは単一の反復可能なオブジェクトのみを受け入れることに注意してください)。

名前付きタプルには、独自の固有のプロパティもいくつかあります。最も便利なものは、クラス属性 _fields、クラス メソッド _make(iterable)、およびインスタンス メソッド _asdict() です。

サンプルコード 1:

from collections import namedtuple
 
# 定义一个命名元祖city,City类,有name/country/population/coordinates四个字段
city = namedtuple('City', 'name country population coordinates')
tokyo = city('Tokyo', 'JP', 36.933, (35.689, 139.69))
print(tokyo)
 
# _fields 类属性,返回一个包含这个类所有字段名称的元组
print(city._fields)
 
# 定义一个命名元祖latLong,LatLong类,有lat/long两个字段
latLong = namedtuple('LatLong', 'lat long')
delhi_data = ('Delhi NCR', 'IN', 21.935, latLong(28.618, 77.208))
 
# 用 _make() 通过接受一个可迭代对象来生成这个类的一个实例,作用跟City(*delhi_data)相同
delhi = city._make(delhi_data)
 
# _asdict() 把具名元组以 collections.OrderedDict 的形式返回,可以利用它来把元组里的信息友好地呈现出来。
print(delhi._asdict())
ログイン後にコピー

実行結果:

サンプルコード 2:

from collections import namedtuple
 
Person = namedtuple('Person', ['age', 'height', 'name'])
data2 = [Person(10, 1.4, 'xiaoming'), Person(12, 1.5, 'xiaohong')]
print(data2)
 
res = data2[0].age
print(res)
 
res2 = data2[1].name
print(res2)
ログイン後にコピー

実行結果:

##サンプルコード 3:

from collections import namedtuple
card = namedtuple('Card', ['rank', 'suit'])  # 定义一个命名元祖card,Card类,有rank和suit两个字段
class FrenchDeck(object):
    ranks = [str(n) for n in range(2, 5)] + list('XYZ')
    suits = 'AA BB CC DD'.split()  # 生成一个列表,用空格将字符串分隔成列表
 
    def __init__(self):
        # 生成一个命名元组组成的列表,将suits、ranks两个列表的元素分别作为命名元组rank、suit的值。
        self._cards = [card(rank, suit) for suit in self.suits for rank in self.ranks]
        print(self._cards)
 
    # 获取列表的长度
    def __len__(self):
        return len(self._cards)
    # 根据索引取值
    def __getitem__(self, item):
        return self._cards[item]
f = FrenchDeck()
print(f.__len__())
print(f.__getitem__(3))
ログイン後にコピー

実行結果:

コード例 4:

from collections import namedtuple
 
person = namedtuple('Person', ['first_name', 'last_name'])
 
p1 = person('san', 'zhang')
print(p1)
print('first item is:', (p1.first_name, p1[0]))
print('second item is', (p1.last_name, p1[1]))
ログイン後にコピー

実行結果:

#サンプル コード 5: [_make は既存のシーケンスまたは反復からインスタンスを作成します]

from collections import namedtuple
course = namedtuple('Course', ['course_name', 'classroom', 'teacher', 'course_data'])
math = course('math', 'ERB001', 'Xiaoming', '09-Feb')
print(math)
print(math.course_name, math.course_data)
course_list = [
    ('computer_science', 'CS001', 'Jack_ma', 'Monday'),
    ('EE', 'EE001', 'Dr.han', 'Friday'),
    ('Pyhsics', 'EE001', 'Prof.Chen', 'None')
]
for k in course_list:
    course_i = course._make(k)
    print(course_i)
ログイン後にコピー

実行結果:

#サンプルコード 6:

[_asdict は、フィールド名を対応する値にマッピングする、新しい順序付けられたdictを返します]

from collections import namedtuple
person = namedtuple('Person', ['first_name', 'last_name'])
zhang_san = ('Zhang', 'San')
p = person._make(zhang_san)
print(p)
# 返回的类型不是dict,而是orderedDict
print(p._asdict())
ログイン後にコピー

実行結果:

サンプル コード 7:

[_replace は新しいインスタンスを返し、指定されたインスタンスを置き換えます。新しい値を持つフィールド]

from collections import namedtuple
person = namedtuple('Person', ['first_name', 'last_name'])
zhang_san = ('Zhang', 'San')
p = person._make(zhang_san)
print(p)
p_replace = p._replace(first_name='Wang')
print(p_replace)
print(p)
p_replace2 = p_replace._replace(first_name='Dong')
print(p_replace2)
ログイン後にコピー

実行結果:

#サンプル コード 8:

【 _fields はフィールドを返しますname]

from collections import namedtuple
person = namedtuple('Person', ['first_name', 'last_name'])
zhang_san = ('Zhang', 'San')
p = person._make(zhang_san)
print(p)
print(p._fields)
ログイン後にコピー
実行結果:

サンプルコード 9:

[フィールドを使用すると、2 つの名前付きタプルを結合できます]

from collections import namedtuple
person = namedtuple('Person', ['first_name', 'last_name'])
print(person._fields)
degree = namedtuple('Degree', 'major degree_class')
print(degree._fields)
person_with_degree = namedtuple('person_with_degree', person._fields + degree._fields)
print(person_with_degree._fields)
zhang_san = person_with_degree('san', 'zhang', 'cs', 'master')
print(zhang_san)
ログイン後にコピー
実行結果:

サンプル コード 10:

【 field_defaults】

from collections import namedtuple
person = namedtuple('Person', ['first_name', 'last_name'], defaults=['san'])
print(person._fields)
print(person._field_defaults)
print(person('zhang'))
print(person('Li', 'si'))
ログイン後にコピー
実行結果:

#サンプルコード 11: [namedtuple はクラスなので、サブクラスを通じて関数を変更できます]

from collections import namedtuple
Point = namedtuple('Point', ['x', 'y'])
p = Point(4, 5)
print(p)
class Point(namedtuple('Point', ['x', 'y'])):
    __slots__ = ()
 
    @property
    def hypot(self):
        return self.x + self.y
    def hypot2(self):
        return self.x + self.y
    def __str__(self):
        return 'result is %.3f' % (self.x + self.y)
aa = Point(4, 5)
print(aa)
print(aa.hypot)
print(aa.hypot2)
ログイン後にコピー

実行結果:

##サンプルコード 12:

[2 つの記述方法の違いに注意してください。 ]

from collections import namedtuple
 
Point = namedtuple("Point", ["x", "y"])
p = Point(11, 22)
print(p)
print(p.x, p.y)
 
# namedtuple本质上等于下面写法
class Point2(object):
    def __init__(self, x, y):
        self.x = x
        self.y = y
o = Point2(33, 44)
print(o)
print(o.x, o.y)
ログイン後にコピー

実行結果:

##[関連する推奨事項: Python3 ビデオ チュートリアル

]

以上がPython分析でのnamedtuple関数の使用法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Debian Apacheログを使用してWebサイトのパフォーマンスを向上させる方法 Debian Apacheログを使用してWebサイトのパフォーマンスを向上させる方法 Apr 12, 2025 pm 11:36 PM

この記事では、Debianシステムの下でApacheログを分析することにより、Webサイトのパフォーマンスを改善する方法について説明します。 1.ログ分析の基本Apacheログは、IPアドレス、タイムスタンプ、リクエストURL、HTTPメソッド、応答コードなど、すべてのHTTP要求の詳細情報を記録します。 Debian Systemsでは、これらのログは通常、/var/log/apache2/access.logおよび/var/log/apache2/error.logディレクトリにあります。ログ構造を理解することは、効果的な分析の最初のステップです。 2。ログ分析ツールさまざまなツールを使用してApacheログを分析できます。コマンドラインツール:GREP、AWK、SED、およびその他のコマンドラインツール。

Python:ゲーム、GUIなど Python:ゲーム、GUIなど Apr 13, 2025 am 12:14 AM

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

PHPとPython:2つの一般的なプログラミング言語を比較します PHPとPython:2つの一般的なプログラミング言語を比較します Apr 14, 2025 am 12:13 AM

PHPとPythonにはそれぞれ独自の利点があり、プロジェクトの要件に従って選択します。 1.PHPは、特にWebサイトの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンス、機械学習、人工知能に適しており、簡潔な構文を備えており、初心者に適しています。

DDOS攻撃検出におけるDebianスニファーの役割 DDOS攻撃検出におけるDebianスニファーの役割 Apr 12, 2025 pm 10:42 PM

この記事では、DDOS攻撃検出方法について説明します。 「DebiansNiffer」の直接的なアプリケーションのケースは見つかりませんでしたが、次の方法はDDOS攻撃検出に使用できます:効果的なDDOS攻撃検出技術:トラフィック分析に基づく検出:突然のトラフィックの成長、特定のポートの接続の急増などのネットワークトラフィックの異常なパターンの識別。たとえば、PysharkライブラリとColoramaライブラリと組み合わせたPythonスクリプトは、ネットワークトラフィックをリアルタイムで監視し、アラートを発行できます。統計分析に基づく検出:データなどのネットワークトラフィックの統計的特性を分析することにより

Debian Readdirが他のツールと統合する方法 Debian Readdirが他のツールと統合する方法 Apr 13, 2025 am 09:42 AM

DebianシステムのReadDir関数は、ディレクトリコンテンツの読み取りに使用されるシステムコールであり、Cプログラミングでよく使用されます。この記事では、ReadDirを他のツールと統合して機能を強化する方法について説明します。方法1:C言語プログラムを最初にパイプラインと組み合わせて、cプログラムを作成してreaddir関数を呼び出して結果をinclude#include#include inctargc、char*argv []){dir*dir; structdireant*entry; if(argc!= 2){(argc!= 2){

Nginx SSL証明書更新Debianチュートリアル Nginx SSL証明書更新Debianチュートリアル Apr 13, 2025 am 07:21 AM

この記事では、DebianシステムでNGINXSSL証明書を更新する方法について説明します。ステップ1:最初にCERTBOTをインストールして、システムがCERTBOTおよびPython3-Certbot-Nginxパッケージがインストールされていることを確認してください。インストールされていない場合は、次のコマンドを実行してください。sudoapt-getupdatesudoapt-getinstolcallcertbotthon3-certbot-nginxステップ2:certbotコマンドを取得して構成してlet'sencrypt証明書を取得し、let'sencryptコマンドを取得し、nginx:sudocertbot - nginxを構成します。

Pythonと時間:勉強時間を最大限に活用する Pythonと時間:勉強時間を最大限に活用する Apr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

debian opensslでHTTPSサーバーを構成する方法 debian opensslでHTTPSサーバーを構成する方法 Apr 13, 2025 am 11:03 AM

DebianシステムでHTTPSサーバーの構成には、必要なソフトウェアのインストール、SSL証明書の生成、SSL証明書を使用するWebサーバー(ApacheやNginxなど)の構成など、いくつかのステップが含まれます。 Apachewebサーバーを使用していると仮定して、基本的なガイドです。 1.最初に必要なソフトウェアをインストールし、システムが最新であることを確認し、ApacheとOpenSSL:sudoaptupdatesudoaptupgraysudoaptinstaをインストールしてください

See all articles