Python のスケジュールされたタスクの実装の詳細な分析 apscheduler
この記事では、Python に関する関連知識を提供します。主に、スケジュールされたタスクの実装に関する関連問題を紹介します。サードパーティのパッケージを使用して、スケジュールされたタスクを管理できます。比較的に、apscheduler を使用する方が使いやすいです。使用方法を見てみましょう。皆さんの参考になれば幸いです。
[関連する推奨事項: Python3 ビデオ チュートリアル ]
apscheduler の最初の紹介
簡単な例を見てみましょうapscheduler がどのように使用されるかを参照してください。
#encoding:utf-8 from apscheduler.schedulers.blocking import BlockingScheduler import datetime def sch_test(): now = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') print('时间:{}, 测试apscheduler'.format(now)) task = BlockingScheduler() task.add_job(func=sch_test, trigger='cron', second='*/10') task.start()
上記の例は非常に単純で、最初に apscheduler オブジェクトを定義し、次に add_job でタスクを追加し、最後にタスクを開始する必要があります。
例では、sch_test タスクを 10 秒ごとに実行します。実行結果は次のとおりです:
时间:2022-10-08 15:16:30, 测试apscheduler 时间:2022-10-08 15:16:40, 测试apscheduler 时间:2022-10-08 15:16:50, 测试apscheduler 时间:2022-10-08 15:17:00, 测试apscheduler
タスク関数の実行時にパラメータを渡したい場合は、add_job に引数を追加するだけです。 task .add_job(func=sch_test, args=('a'),trigger='cron', Second='*/10') などの関数。
apscheduler にはどのようなモジュールがありますか?
上の例では、apschedulerl の使用方法を予備的に理解しましたが、次に、apscheduler の設計フレームワークを知る必要があります。 apscheduler には、トリガー、job_stores、executors、およびスケジューラーという 4 つの主要なモジュールがあります。
1. トリガー:
トリガーとは、タスクによって指定されたトリガー方法を指します。この例では、「cron」方法を使用します。 cron、date、interval のいずれかを選択できます。
Cron は、Linux の crontab に似た、指定された時間にトリガーされるスケジュールされたタスクを表します。
利用可能なパラメータは次のとおりです:
さらに、式タイプを使用して cron を設定することもできます。たとえば、一般的に使用されるものは次のとおりです。
毎日 7:20 に 1 回実行される使用例:
task.add_job(func=sch_test, args =( '時限タスク',), トリガー='cron',
hour='7', minutes='20')
date は、特定のタスクに固有の 1 回限りのタスクを表します。 time;
使用例:
# 使用run_date指定运行时间 task.add_job(func='sch_test', trigger='date', run_date=datetime.datetime(2022 ,10 , 8, 16, 1, 30)) # 或者用next_run_time task.add_job(func=sch_test,trigger='date', next_run_time=datetime.datetime.now() + datetime.timedelta(seconds=3))
interval は周期タスクを表し、間隔を指定し、その間隔が経過するたびに実行します。
interval では次のパラメータを設定できます:
# 使用例、sch_test タスクを 3 秒ごとに実行します:
task.add_job(func=sch_test, args=('循环任务',), trigger='interval', seconds=3)。
Come on Theこの例では 3 つのトリガーをすべて使用しています:
# encoding:utf-8 from apscheduler.schedulers.blocking import BlockingScheduler import datetime def sch_test(job_type): now = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') print('时间:{}, {}测试apscheduler'.format(now, job_type)) task = BlockingScheduler() task.add_job(func=sch_test, args=('一次性任务',),trigger='date', next_run_time=datetime.datetime.now() + datetime.timedelta(seconds=3)) task.add_job(func=sch_test, args=('定时任务',), trigger='cron', second='*/5') task.add_job(func=sch_test, args=('循环任务',), trigger='interval', seconds=3) task.start()
結果の一部を印刷します:
时间:2022-10-08 15:45:49, 一次性任务测试apscheduler 时间:2022-10-08 15:45:49, 循环任务测试apscheduler 时间:2022-10-08 15:45:50, 定时任务测试apscheduler 时间:2022-10-08 15:45:52, 循环任务测试apscheduler 时间:2022-10-08 15:45:55, 定时任务测试apscheduler 时间:2022-10-08 15:45:55, 循环任务测试apscheduler 时间:2022-10-08 15:45:58, 循环任务测试apscheduler
コード例と結果の表示を通じて、さまざまなトリガーの使用の違いを明確に知ることができます。
2. タスク ストレージ job_stores
名前が示すように、タスク ストレージはタスクが保存される場所であり、タスクはデフォルトでメモリに保存されます。 。タスクをmysqlに保存するなど、保存方法をカスタマイズすることもできます。ここにはいくつかのオプションがあります:
通常、デフォルトではメモリに保存されますが、プログラムが失敗して再起動すると、タスクがプルされて再度実行されます。実行要件が高い場合は、他のメモリを選択できます。
SQLAlchemyJobStore ストレージの使用例:
from apscheduler.schedulers.blocking import BlockingScheduler def sch_test(job_type): now = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') print('时间:{}, {}测试apscheduler'.format(now, job_type)) sched = BlockingScheduler() # 使用mysql存储任务 sql_url = 'mysql+pymysql://root:root@localhost:3306/db_name?charset=utf8' sched.add_jobstore('sqlalchemy',url=sql_url) # 添加任务 sched.add_job(func=sch_test, args=('定时任务',), trigger='cron', second='*/5') sched.start()
3. エグゼキューター executor
エグゼキューターの機能は、タスクをスレッド プールまたはプロセス プールで実行します。いくつかのオプションがあります:
#デフォルトは ThreadPoolExecutor で、一般的に使用されるのはスレッドおよびプロセス プール エグゼキュータです。アプリケーションが CPU を大量に使用する操作である場合は、ProcessPoolExecutor を使用して実行できます。
4. スケジューラ スケジューラ
スケジューラは、apscheduler の中核に属し、メモリを含む apscheduler システム全体を調整する役割を果たします。および executor. の場合、トリガーはスケジュールに従って通常どおり実行されます。いくつかのスケジューラがあります:
#特定のシナリオではありませんが、最も一般的に使用されるスケジューラは BlockingScheduler です。
例外監視
スケジュールされたタスクの実行中にエラーが発生した場合、監視メカニズムをセットアップする必要があります。エラー情報を記録するログモジュール。
使用例:
from apscheduler.schedulers.blocking import BlockingScheduler import datetime from apscheduler.events import EVENT_JOB_EXECUTED , EVENT_JOB_ERROR import logging # logging日志配置打印格式及保存位置 logging.basicConfig(level=logging.INFO, format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s', datefmt='%Y-%m-%d %H:%M:%S', filename='sche.log', filemode='a') def log_listen(event): if event.exception : print ( '任务出错,报错信息:{}'.format(event.exception)) else: print ( '任务正常运行...' ) def sch_test(job_type): now = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') print('时间:{}, {}测试apscheduler'.format(now, job_type)) print(1/0) sched = BlockingScheduler() # 使用mysql存储任务 sql_url = 'mysql+pymysql://root:root@localhost:3306/db?charset=utf8' sched.add_jobstore('sqlalchemy',url=sql_url) # 添加任务 sched.add_job(func=sch_test, args=('定时任务',), trigger='cron', second='*/5') # 配置任务执行完成及错误时的监听 sched.add_listener(log_listen, EVENT_JOB_EXECUTED | EVENT_JOB_ERROR) # 配置日志监听 sched._logger = logging sched.start()
apscheduler カプセル化の使用法
上面介绍了apscheduler框架的主要模块,我们基本能掌握怎样使用apscheduler了。下面就来封装一下apscheduler吧,以后要用直接在这份代码上修改就行了。
from apscheduler.schedulers.blocking import BlockingScheduler from apscheduler.executors.pool import ThreadPoolExecutor, ProcessPoolExecutor from apscheduler.events import EVENT_JOB_EXECUTED , EVENT_JOB_ERROR import logging import logging.handlers import os import datetime class LoggerUtils(): def init_logger(self, logger_name): # 日志格式 formatter = logging.Formatter('%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s') log_obj = logging.getLogger(logger_name) log_obj.setLevel(logging.INFO) # 设置log存储位置 path = '/data/logs/' filename = '{}{}.log'.format(path, logger_name) if not os.path.exists(path): os.makedirs(path) # 设置日志按照时间分割 timeHandler = logging.handlers.TimedRotatingFileHandler( filename, when='D', # 按照什么维度切割, S:秒,M:分,H:小时,D:天,W:周 interval=1, # 多少天切割一次 backupCount=10 # 保留几天 ) timeHandler.setLevel(logging.INFO) timeHandler.setFormatter(formatter) log_obj.addHandler(timeHandler) return log_obj class Scheduler(LoggerUtils): def __init__(self): # 执行器设置 executors = { 'default': ThreadPoolExecutor(10), # 设置一个名为“default”的ThreadPoolExecutor,其worker值为10 'processpool': ProcessPoolExecutor(5) # 设置一个名为“processpool”的ProcessPoolExecutor,其worker值为5 } self.scheduler = BlockingScheduler(timezone="Asia/Shanghai", executors=executors) # 存储器设置 # 这里使用sqlalchemy存储器,将任务存储在mysql sql_url = 'mysql+pymysql://root:root@localhost:3306/db?charset=utf8' self.scheduler.add_jobstore('sqlalchemy',url=sql_url) def log_listen(event): if event.exception: # 日志记录 self.scheduler._logger.error(event.traceback) # 配置任务执行完成及错误时的监听 self.scheduler.add_listener(log_listen, EVENT_JOB_EXECUTED | EVENT_JOB_ERROR) # 配置日志监听 self.scheduler._logger = self.init_logger('sche_test') def add_job(self, *args, **kwargs): """添加任务""" self.scheduler.add_job(*args, **kwargs) def start(self): """开启任务""" self.scheduler.start() # 测试任务 def sch_test(job_type): now = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') print('时间:{}, {}测试apscheduler'.format(now, job_type)) print(1/0) # 添加任务,开启任务 sched = Scheduler() # 添加任务 sched.add_job(func=sch_test, args=('定时任务',), trigger='cron', second='*/5') # 开启任务 sched.start()
【相关推荐:Python3视频教程 】
以上がPython のスケジュールされたタスクの実装の詳細な分析 apschedulerの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











PHPは主に手順プログラミングですが、オブジェクト指向プログラミング(OOP)もサポートしています。 Pythonは、OOP、機能、手続き上のプログラミングなど、さまざまなパラダイムをサポートしています。 PHPはWeb開発に適しており、Pythonはデータ分析や機械学習などのさまざまなアプリケーションに適しています。

PHPはWeb開発と迅速なプロトタイピングに適しており、Pythonはデータサイエンスと機械学習に適しています。 1.PHPは、単純な構文と迅速な開発に適した動的なWeb開発に使用されます。 2。Pythonには簡潔な構文があり、複数のフィールドに適しており、強力なライブラリエコシステムがあります。

Pythonは、スムーズな学習曲線と簡潔な構文を備えた初心者により適しています。 JavaScriptは、急な学習曲線と柔軟な構文を備えたフロントエンド開発に適しています。 1。Python構文は直感的で、データサイエンスやバックエンド開発に適しています。 2。JavaScriptは柔軟で、フロントエンドおよびサーバー側のプログラミングで広く使用されています。

PHPは1994年に発信され、Rasmuslerdorfによって開発されました。もともとはウェブサイトの訪問者を追跡するために使用され、サーバー側のスクリプト言語に徐々に進化し、Web開発で広く使用されていました。 Pythonは、1980年代後半にGuidovan Rossumによって開発され、1991年に最初にリリースされました。コードの読みやすさとシンプルさを強調し、科学的コンピューティング、データ分析、その他の分野に適しています。

VSコードはWindows 8で実行できますが、エクスペリエンスは大きくない場合があります。まず、システムが最新のパッチに更新されていることを確認してから、システムアーキテクチャに一致するVSコードインストールパッケージをダウンロードして、プロンプトとしてインストールします。インストール後、一部の拡張機能はWindows 8と互換性があり、代替拡張機能を探すか、仮想マシンで新しいWindowsシステムを使用する必要があることに注意してください。必要な拡張機能をインストールして、適切に動作するかどうかを確認します。 Windows 8ではVSコードは実行可能ですが、開発エクスペリエンスとセキュリティを向上させるために、新しいWindowsシステムにアップグレードすることをお勧めします。

VSコードはPythonの書き込みに使用でき、Pythonアプリケーションを開発するための理想的なツールになる多くの機能を提供できます。ユーザーは以下を可能にします。Python拡張機能をインストールして、コードの完了、構文の強調表示、デバッグなどの関数を取得できます。デバッガーを使用して、コードを段階的に追跡し、エラーを見つけて修正します。バージョンコントロールのためにGitを統合します。コードフォーマットツールを使用して、コードの一貫性を維持します。糸くずツールを使用して、事前に潜在的な問題を発見します。

VSコードでは、次の手順を通じて端末でプログラムを実行できます。コードを準備し、統合端子を開き、コードディレクトリが端末作業ディレクトリと一致していることを確認します。プログラミング言語(pythonのpython your_file_name.pyなど)に従って実行コマンドを選択して、それが正常に実行されるかどうかを確認し、エラーを解決します。デバッガーを使用して、デバッグ効率を向上させます。

VSコード拡張機能は、悪意のあるコードの隠れ、脆弱性の活用、合法的な拡張機能としての自慰行為など、悪意のあるリスクを引き起こします。悪意のある拡張機能を識別する方法には、パブリッシャーのチェック、コメントの読み取り、コードのチェック、およびインストールに注意してください。セキュリティ対策には、セキュリティ認識、良好な習慣、定期的な更新、ウイルス対策ソフトウェアも含まれます。
