一次mysql慢查询事故分析_MySQL
年前项目组接微信公众号。上线之后,跟微信相关的用cid列的查询会话的SQL变慢了几十倍!思考这个问题思考了很久,从出现以来一直是我心头的一个结。cid这一列是建了索引的,普通的cid列更新都没问题,为何只有微信的有问题?相同的前缀又是如何影响索引的?
分析过程 1.explain下微信cid的查询,微信的cid会以mid-qqwanggou001为前缀插入数据
explainselect *from analysis_sessionswhere cid = "mid-qqwanggou001-b99359d9054171901c0"
分析结果如下:
从explain分析可以看出,这个查询使用了索引,但是innodb认为有165万行数据需要给mysql服务器筛选(也就是用where条件过滤)。如果这些庞大的数据在内存,遍历一遍花不了多少时间。但是极有可能,这些数据是在磁盘上的。这么多的数据从磁盘读取然后载入内存,大量磁盘IO必然是十分的耗时的。
2.分析普通cid的查询
取数据进行explain,cid = "sid-a2f9047ddf528d837e5f60843c83aae9"。这个数据是不带公共前缀的。
explainselect *
from analysis_sessions
where cid = "sid-a2f9047ddf528d837e5f60843c83aae9"
分析结果如下:
相同的列,相同的索引,这次存储引擎向mysql服务器仅仅返回了一行数据。也就是说innodb仅仅需要读取一个二级索引的叶子节点。相对于上面那个sql的IO,压力显然小很多。
初步分析结论:带有长前缀的cid查询,innodb存储引擎会向mysql上端服务器返回百万级别的数据。这只是现象,我还是想问,相同的表,相同的列,相同的索引结构(B+树索引),相同的查询,仅仅不同的数据,结果为何有差么大的差别?
近一步分析
纠结这个问题很久了,直到前天晚上散步时候,无意的会想到了 explain结果的key_len这一列。这一列我从来不看,觉得没用,但是27与cid这一列50个varchar的定义格格不入。27明显小于50,首先可以肯定,这个索引用的是前缀索引,说白了,截取了字符串的前面一部分作为索引数据。analysis_session表用的gbk编码,也就是说,索引需要2个字节表示一个varchar。解释一下key_len
27 = 2 * 12 + 2 + 1
27位的索引,仅仅索引了前面12个字符。中间的2存储长度,后面的一个字节存储Null信息,因为这一列是允许Null的。
最终结论:问题到这已经很明了了,微信cid的前缀是17个字符的,大于前缀索引的12个字符,也就是说,所有存储微信cid数据(百万级别)B+树叶子节点将只有一个B+树非叶节点的指针指向这里。于是,当你查微信cid相关的数据时,所有微信cid将被返回给mysql服务器进行where过滤了,效率上讲,这是很恐怖的。索引确实还是被用上了,不然会造成全表扫描。但是这个数据设计的有问题,B+树的查找效率是O(LogN)的,但是遇上这个数据,立刻变成O(N),相当于一个局部全表扫描。
那么合理的推测,只要有新增的微信cid,微信cid的查询只会变的更慢!
引申,更佳的代码 practice:
varchar,blob, text等边长数据建索引的时候,数据库会自动建前缀索引,于是B+树不会索引整个字段的部分。很多同学喜欢用前缀作为字符串的标志,这次要注意了,有前车之鉴了。前缀存入mysql之后会降低检索效率,前缀越长,B+树查询的效率越低。
这里给出代码的建议:
1.将前缀作为后缀,startWith改为endWith
2.不要尝试后缀模糊搜索,like "%.com",这种做法更糟糕,完全用不了索引,于是全表扫描。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









完全なテーブルスキャンは、MySQLでインデックスを使用するよりも速い場合があります。特定のケースには以下が含まれます。1)データボリュームは小さい。 2)クエリが大量のデータを返すとき。 3)インデックス列が高度に選択的でない場合。 4)複雑なクエリの場合。クエリプランを分析し、インデックスを最適化し、オーバーインデックスを回避し、テーブルを定期的にメンテナンスすることにより、実際のアプリケーションで最良の選択をすることができます。

INNODBのフルテキスト検索機能は非常に強力であり、データベースクエリの効率と大量のテキストデータを処理する能力を大幅に改善できます。 1)INNODBは、倒立インデックスを介してフルテキスト検索を実装し、基本的および高度な検索クエリをサポートします。 2)一致を使用してキーワードを使用して、ブールモードとフレーズ検索を検索、サポートします。 3)最適化方法には、単語セグメンテーションテクノロジーの使用、インデックスの定期的な再構築、およびパフォーマンスと精度を改善するためのキャッシュサイズの調整が含まれます。

はい、MySQLはWindows 7にインストールできます。MicrosoftはWindows 7のサポートを停止しましたが、MySQLは引き続き互換性があります。ただし、インストールプロセス中に次のポイントに注意する必要があります。WindowsのMySQLインストーラーをダウンロードしてください。 MySQL(コミュニティまたはエンタープライズ)の適切なバージョンを選択します。インストールプロセス中に適切なインストールディレクトリと文字セットを選択します。ルートユーザーパスワードを設定し、適切に保ちます。テストのためにデータベースに接続します。 Windows 7の互換性とセキュリティの問題に注意してください。サポートされているオペレーティングシステムにアップグレードすることをお勧めします。

クラスター化されたインデックスと非クラスター化されたインデックスの違いは次のとおりです。1。クラスター化されたインデックスは、インデックス構造にデータを保存します。これは、プライマリキーと範囲でクエリするのに適しています。 2.非クラスター化されたインデックスストアは、インデックスキー値とデータの行へのポインターであり、非プリマリーキー列クエリに適しています。

MySQLは、オープンソースのリレーショナルデータベース管理システムです。 1)データベースとテーブルの作成:createdatabaseおよびcreateTableコマンドを使用します。 2)基本操作:挿入、更新、削除、選択。 3)高度な操作:参加、サブクエリ、トランザクション処理。 4)デバッグスキル:構文、データ型、およびアクセス許可を確認します。 5)最適化の提案:インデックスを使用し、選択*を避け、トランザクションを使用します。

MySQLデータベースでは、ユーザーとデータベースの関係は、アクセス許可と表によって定義されます。ユーザーには、データベースにアクセスするためのユーザー名とパスワードがあります。許可は助成金コマンドを通じて付与され、テーブルはCreate Tableコマンドによって作成されます。ユーザーとデータベースの関係を確立するには、データベースを作成し、ユーザーを作成してから許可を付与する必要があります。

MySQLは、Bツリー、ハッシュ、フルテキスト、および空間の4つのインデックスタイプをサポートしています。 1.B-Treeインデックスは、等しい値検索、範囲クエリ、ソートに適しています。 2。ハッシュインデックスは、等しい値検索に適していますが、範囲のクエリとソートをサポートしていません。 3.フルテキストインデックスは、フルテキスト検索に使用され、大量のテキストデータの処理に適しています。 4.空間インデックスは、地理空間データクエリに使用され、GISアプリケーションに適しています。

MySQLとMariaDBは共存できますが、注意して構成する必要があります。重要なのは、さまざまなポート番号とデータディレクトリを各データベースに割り当て、メモリ割り当てやキャッシュサイズなどのパラメーターを調整することです。接続プーリング、アプリケーションの構成、およびバージョンの違いも考慮する必要があり、落とし穴を避けるために慎重にテストして計画する必要があります。 2つのデータベースを同時に実行すると、リソースが制限されている状況でパフォーマンスの問題を引き起こす可能性があります。
