MySQL中distinct语句去查询重复记录及相关的性能讨论_MySQL
在 MySQL 查询中,可能会包含重复值。这并不成问题,不过,有时您也许希望仅仅列出不同(distinct)的值。
关键词 DISTINCT 用于返回唯一不同的值,就是去重啦。用法也很简单:
SELECT DISTINCT * FROM tableName
DISTINCT 这个关键字来过滤掉多余的重复记录只保留一条。
另外,如果要对某个字段去重,可以试下:
SELECT *, COUNT(DISTINCT nowamagic) FROM table GROUP BY nowamagic
这个用法,MySQL的版本不能太低。
在编写查询之前,我们甚至应该对过滤条件进行排序,真正高效的条件(可能有多个,涉到同的表)是查询的主要驱动力,低效条件只起辅助作用。那么定义高效过滤条件的准则是什呢?首先,要看过滤条件能否尽快减少必须处理的数据量。所以,我们必须倍加关注条件的写方式。
假设有四个表: customers 、 orders 、 orderdetail 、 articles ,现在假设 SQL 要处理的问题是:找出最近六个月内居住在 Gotham 市、订购了蝙蝠车的所有客户。当然,编写这个查询有多种方法, ANSI SQL 的推崇者可能写出下列语句:
select distinct c.custname from customers c join orders o on o.custid = c.custid join orderdetail od on od.ordid = o.ordid join articles a on a.artid = od.artid where c.city = 'GOTHAM' and a.artname = 'BATMOBILE' and o.ordered >= somefunc
其中, somefunc 是个函数,返回距今六个月前的具体日期。注意上面用了 distinct ,因为考虑到某个客户可以是大买家,最近订购了好几台蝙蝠车。
暂不考虑优化器将如何改写此查询,我们先看一下这段代码的含义。首先,来自 customers 表的数据应只保留城市名为 Gotham 的记录。接着,搜索 orders 表,这意味着 custid 字段最好有索引,否则只有通过排序、合并或扫描 orders 表建立一个哈希表才能保证查询速度。对 orders 表 ,还要针对订单日期进行过滤:如果优化器比较聪明,它会在连接( join )前先过滤掉一些数据,从而减少后面要处理的数据量;不太聪明的优化器则可能会先做连接,再作过滤,这时在连接中指定过滤条件利于提高性能,例如:
join orders o on o.custid = c.custid and a.ordered >= somefunc
注意,如果是:
left outer join orders o on o.custid = c.custid and a.ordered >= somefunc
此处关于left表的筛选条件将失效,因为是左外连接,左表的所有列都将出现在这次连接结果集中)。
即使过滤条件与连接( join )无关,优化器也会受到过滤条件的影响。例如,若 orderdetail 的主键为( ordid, artid ),即 ordid 为索引的第一个属性,那么我们可以利用索引找到与订单相关的记录。但如果主键是( artid, ordid )就太不幸了(注意,就关系理论而言 ,无论哪个版本都是完全一样),此时的访问效率比( ordid, artid )作为索引时要差,甚至一些数据库产品无法使用该索引(注 3 ),唯一的希望就是在ordid 上加独立索引了。
连接了表 orderdetail 和 orders 之后,来看 articles 表,这不会有问题,因为表 order 包括 artid 字段。最后,检查 articles 中的值是否为 Batmobile 。查询就这样结束了,因为用了 distinct ,通过层层筛选的客户名还必须要排序,以剔除重复项目。
避免在最高层使用 distinct 应该是一条基本规则 。原因在于,即使我们遗漏了连接的某个条件, distinct 也会使查询 " 看似正确 " 地执行 —— 无可否认,发现重复数据容易,发现数据不准确很难,所以避免在最高层使用 distinct 应该是一条基本规则。
发现结果不正确更难,例如,如果恰巧有多位客户都叫 " Wayne " , distinct 不但会剔除由同个客户的多张订单产生的重复项目,也会剔除由名字相同的不同客户产生的重复项目。事实上,应该同时返回具唯一性的客户 ID 和客户名,以保证得到蝙蝠车买家的完整清单。
要摆脱 distinct ,可考虑以下思路:客户在 Gohtam 市,而且满足存在性测试,即在最近六个月订购过蝙蝠车。注意,多数(但非全部) SQL 方言支持以下语法:
select c.custname from customers c where c.city = 'GOTHAM' and exists (select null from orders o, orderdetail od, articles a where a.artname = 'BATMOBILE' and a.artid = od.artid and od.ordid = o.ordid and o.custid = c.custid and o.ordered >= somefunc )
上例的存在性测试,同一个名字可能出现多次,但每个客户只出现一次,不管他有多少订单。有人认为我对 ANSI SQL 语法的挑剔有点苛刻(指 " 蝙蝠车买主 " 的例子),因为上面代码中customers 表的地位并没有降低。其实,关键区别在于,新查询中 customers 表是查询结果的唯一来源(嵌套的子查询会负责找出客户子集),而先前的查询却用了 join 。
这个嵌套的子查询与外层的 select 关系十分密切。如代码第 11 行所示(粗体部分),子查询参照了外层查询的当前记录,因此,内层子查询就是所谓的关联子查询( correlated subquery )。
此类子查询有个弱点,它无法在确定当前客户之前执行。如果优化器不改写此查询,就必须先找出每个客户,然后逐一检查是否满足存在性测试,当来自 Gotham 市的客户非常少时执行效率倒是很高,否则情况会很糟(此时,优秀的优化器应尝试其他执行查询的方式)。
select custname from customers where city = 'GOTHAM' and custid in (select o.custid from orders o, orderdetail od, articles a where a.artname = 'BATMOBILE' and a.artid = od.artid and od.ordid = o.ordid and o.ordered >= somefunc)
在这个例子中,内层查询不再依赖外层查询,它已变成了非关联子查询( uncorrelated subquery ),只须执行一次。很显然,这段代码采用了原有的执行流程。在本节的前一个例子 中 ,必须先搜寻符合地点条件的客户(如均来自 GOTHAM ),接着依次检查各个订单。而现在,订购了蝙蝠车的客户,可以通过内层查询获得。
不过,如果更仔细地分析一下,前后两个版本的代码还有些更微妙的差异。含关联子查询的代码中,至关重要的是 orders 表中的 custid 字段要有索引,而这对另一段代码并不重要,因为这时要用到的索引(如果有的话)是表 customers 的主键索引。
你或许注意到,新版的查询中执行了隐式的 distinct 。的确,由于连接操作,子查询可能会返回有关一个客户的多条记录。但重复项目不会有影响,因为 in 条件只检查该项目是否出现在子查询返回的列表中,且 in 不在乎某值在列表中出现了一次还是一百次。但为了一致性,作为整体,应该对子查询和主查询应用相同的规则,也就是在子查询中也加入存在性测试:
select custname from customers where city = 'GOTHAM' and custid in (select o.custid from orders o where o.ordered >= somefunc and exists (select null from orderdetail od, articles a where a.artname = 'BATMOBILE' and a.artid = od.artid and od.ordid = o.ordid))
或者
select custname from customers where city = 'GOTHAM' and custid in (select custid from orders where ordered >= somefunc and ordid in (select od.ordid from orderdetail od, articles a where a.artname = 'BATMOBILE' and a.artid = od.artid)
尽管嵌套变得更深、也更难懂了,但子查询内应选择 exists 还是 in 的选择规则相同:此选择取决于日期与商品条件的有效性。除非过去六个月的生意非常清淡,否则商品名称应为最有效的过滤条件,因此子查询中用 in 比 exists 好,这是因为,先找出所有蝙蝠车的订单、再检查销售是否发生在最近六个月,比反过来操作要快。如果表 orderdetail 的 artid 字段有索引,这个方法会更快,否则,这个聪明巧妙的举措就会黯然失色。
每当对大量记录做存在性检查时,选择 in 还是 exists 须斟酌。
利于多数 SQL 方言,非关联子查询可以被改写成 from 子句中的内嵌视图。然而,一定要记住的是, in 会隐式地剔除重复项目,当子查询改写为 from 子句中的内嵌视图时,必须要显式地消除重复项目。例如:
select custname from customers where city = 'GOTHAM' and custid in (select o.custid from orders o, (select distinct od.ordid from orderdetail od, articles a where a.artname = 'BATMOBILE' and a.artid = od.artid) x where o.ordered >= somefunc and x.ordid = o.ordid)
总结:保证 SQL 语句返回正确结果,只是建立最佳 SQL 语句的第一步。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











ビッグ データ構造の処理スキル: チャンキング: データ セットを分割してチャンクに処理し、メモリ消費を削減します。ジェネレーター: データ セット全体をロードせずにデータ項目を 1 つずつ生成します。無制限のデータ セットに適しています。ストリーミング: ファイルやクエリ結果を 1 行ずつ読み取ります。大きなファイルやリモート データに適しています。外部ストレージ: 非常に大規模なデータ セットの場合は、データをデータベースまたは NoSQL に保存します。

PHP で MySQL データベースをバックアップおよび復元するには、次の手順を実行します。 データベースをバックアップします。 mysqldump コマンドを使用して、データベースを SQL ファイルにダンプします。データベースの復元: mysql コマンドを使用して、SQL ファイルからデータベースを復元します。

MySQL クエリのパフォーマンスは、検索時間を線形の複雑さから対数の複雑さまで短縮するインデックスを構築することで最適化できます。 PreparedStatement を使用して SQL インジェクションを防止し、クエリのパフォーマンスを向上させます。クエリ結果を制限し、サーバーによって処理されるデータ量を削減します。適切な結合タイプの使用、インデックスの作成、サブクエリの使用の検討など、結合クエリを最適化します。クエリを分析してボトルネックを特定し、キャッシュを使用してデータベースの負荷を軽減し、オーバーヘッドを最小限に抑えます。

MySQLテーブルにデータを挿入するにはどうすればよいですか?データベースに接続する: mysqli を使用してデータベースへの接続を確立します。 SQL クエリを準備します。挿入する列と値を指定する INSERT ステートメントを作成します。クエリの実行: query() メソッドを使用して挿入クエリを実行します。成功すると、確認メッセージが出力されます。

PHP を使用して MySQL テーブルを作成するには、次の手順が必要です。 データベースに接続します。データベースが存在しない場合は作成します。データベースを選択します。テーブルを作成します。クエリを実行します。接続を閉じます。

PHP で MySQL ストアド プロシージャを使用するには: PDO または MySQLi 拡張機能を使用して、MySQL データベースに接続します。ストアド プロシージャを呼び出すステートメントを準備します。ストアド プロシージャを実行します。結果セットを処理します (ストアド プロシージャが結果を返す場合)。データベース接続を閉じます。

MySQL 8.4 (2024 年時点の最新の LTS リリース) で導入された主な変更の 1 つは、「MySQL Native Password」プラグインがデフォルトで有効ではなくなったことです。さらに、MySQL 9.0 ではこのプラグインが完全に削除されています。 この変更は PHP および他のアプリに影響します

Oracle データベースと MySQL はどちらもリレーショナル モデルに基づいたデータベースですが、Oracle は互換性、スケーラビリティ、データ型、セキュリティの点で優れており、MySQL は速度と柔軟性に重点を置いており、小規模から中規模のデータ セットに適しています。 ① Oracle は幅広いデータ型を提供し、② 高度なセキュリティ機能を提供し、③ エンタープライズレベルのアプリケーションに適しています。① MySQL は NoSQL データ型をサポートし、② セキュリティ対策が少なく、③ 小規模から中規模のアプリケーションに適しています。
