エッジ AI を使用して新しい機会を発見するにはどうすればよいですか?
新興企業にとっても大企業にとっても、現在および将来の競争力を確保するには、新しく革新的なテクノロジーに取り組むことが重要です。人工知能 (AI) は、ますます幅広い業界に多面的なソリューションを提供します。
現在の経済状況では、研究開発にはこれまで以上に十分な資金を投入する必要があります。企業は将来のテクノロジーやインフラへの投資を振り返ることがよくありますが、失敗のリスクはプロジェクトの関係者に大きなプレッシャーを与えます。
ただし、これはイノベーションが停止したり、速度が低下したりするべきだという意味ではありません。新興企業と大企業の両方にとって、現在および将来の競争力を確保するには、新しく革新的なテクノロジーに取り組むことが重要です。人工知能 (AI) は、ますます幅広い業界に多面的なソリューションを提供します。
過去 10 年にわたり、人工知能はまったく新しい収益機会を生み出す上で重要な役割を果たしてきました。ユーザー行動の理解と予測から、コードやコンテンツの生成支援に至るまで、人工知能と機械学習 (ML) 革命により、消費者がアプリ、Web サイト、オンライン サービスから得られる価値は飛躍的に増大しました。
ただし、この革命は主にクラウドに限定されており、実質的に無制限のストレージとコンピューティング、および主要なパブリック クラウド サービス プロバイダーの便利な仮想ハードウェアにより、あらゆる AI/ML アプリケーションで最高のパフォーマンスを確立することが可能になります。実践モデルが比較的想像しやすくなります。
AI: エッジへの移行
AI 処理は主にクラウドで行われるため、AI/ML 革命は依然としてエッジ デバイスには手の届かないところにあります。これらは、工場の現場、建設現場、研究所、自然保護区、私たちが身に着けているアクセサリーや衣類、出荷する荷物の内部、および接続、ストレージ、コンピューティングが必要なその他の環境で見られる、小型で低消費電力のプロセッサーです。 、エネルギーは有限であるか、当たり前のものとは考えられません。彼らの環境では、コンピューティング サイクルとハードウェア アーキテクチャが重要であり、予算はエンドポイントやソケット接続の数ではなく、ワットとナノ秒で測定されます。
AI/ML における次のテクノロジーの壁を打ち破ろうとしている CTO、エンジニアリング、データ、機械学習のリーダー、製品チームは、エッジに目を向ける必要があります。エッジ AI とエッジ ML は独特で複雑な課題を抱えており、システム統合、設計、運用、ロジスティクスから組み込み、データ、IT、ML エンジニアリングに至るまで幅広い専門知識を持つ多くの関係者の慎重な調整と関与が必要です。
エッジ AI とは、ハイエンドのゲートウェイやローカル サーバーからローエンドの環境発電センサーや MCU まで、ある種の特定目的のハードウェアでアルゴリズムを実行する必要があることを意味します。このような製品やアプリケーションを確実に成功させるには、データ チームと ML チームが製品チームやハードウェア チームと緊密に連携して、互いのニーズ、制約、要件を理解し、考慮する必要があります。
カスタム エッジ AI ソリューションを構築する課題は克服できないわけではありませんが、必要なチーム間のギャップを埋め、より短い時間でより高いレベルの成果を確実に達成できるエッジ AI アルゴリズム開発用のプラットフォームが存在します。さらなる投資の方向性を定める必要がある。その他の注意事項は次のとおりです。
アルゴリズム開発中のハードウェアのテスト
データ サイエンス チームと ML チームにアルゴリズムを開発させ、それをファームウェア エンジニアに渡してデバイスにインストールすることは効率的ではありませんし、常に可能でもありません。ハードウェアインザループのテストと展開は、エッジ AI 開発パイプラインの基本的な部分である必要があります。ハードウェア上でアルゴリズムの実行とテストを同時に行う方法がなければ、エッジ AI アルゴリズムの開発時に発生する可能性のあるメモリ、パフォーマンス、遅延の制限を予測することは困難です。
一部のクラウドベースのモデル アーキテクチャは、いかなるタイプの制約付きデバイスやエッジ デバイスでも実行することを意図していないため、事前に予測することでファームウェア チームと ML チームの数か月の労力を節約できます。
IoT データはビッグ データと同等ではありません
ビッグ データとは、パターンや傾向を明らかにするために分析できる大規模なデータ セットを指します。ただし、モノのインターネット (IoT) データは必ずしも量ではなく、データの質が重要です。さらに、このデータは時系列のセンサー データ、音声データ、または画像である可能性があり、前処理が必要な場合があります。
デジタル信号処理 (DSP) などの従来のセンサー データ処理テクノロジーと AI/ML を組み合わせることで、以前のテクノロジーでは不可能だった正確な洞察を提供する新しいエッジ AI アルゴリズムを生み出すことができます。ただし、IoT データはビッグデータではないため、エッジ AI 開発に使用されるこれらのデータセットの量と分析は異なります。結果として得られるモデルの精度とパフォーマンスに基づいて、データセットのサイズと品質を迅速に実験することは、運用環境に導入可能なアルゴリズムへの道における重要なステップです。
ハードウェアの開発は十分に困難です
選択したハードウェアがエッジ AI ソフトウェア ワークロードを実行できるかどうかが分からないと、ハードウェアの構築は困難です。部品表を選択する前に、ハードウェアのベンチマークを開始することが重要です。既存のハードウェアでは、デバイスで利用可能なメモリの制限がより重要になる可能性があります。
初期の小規模なデータ セットであっても、エッジ AI 開発プラットフォームは、AI ワークロードの実行に必要なハードウェアの種類のパフォーマンスとメモリの推定値を提供し始めることができます。
デバイスの選択とエッジ AI モデルの初期バージョンに対するベンチマークを比較検討するプロセスを用意することで、デバイス上で実行される必要なファームウェアと AI モデルをサポートするためのハードウェア サポートが確実に整備されます。
新しいエッジ AI ソフトウェアを構築、検証し、本番環境にプッシュする
開発プラットフォームを選択するときは、さまざまなベンダーが提供するエンジニアリング サポートも考慮する価値があります。エッジ AI にはデータ サイエンス、ML、ファームウェア、ハードウェアが含まれており、内部の開発チームが追加のサポートを必要とする可能性がある分野でベンダーがガイダンスを提供することが重要です。
場合によっては、開発される実際のモデルよりも、データ インフラストラクチャ、ML 開発ツール、テスト、デプロイメント環境、継続的統合を含むシステム レベルの設計プロセスの計画が重要になります。デプロイメント (CI/CD) パイプライン。
最後に、エッジ AI 開発ツールは、ML エンジニアからファームウェア開発者まで、チーム内のさまざまなユーザーに対応することが重要です。ローコード/ノーコードのユーザー インターフェイスは、新しいアプリケーションのプロトタイプを迅速に作成して構築するための優れた方法であり、API と SDK は、Jupyter ノートブックの Python を使用してより効率的かつ迅速に作業できる経験豊富な ML 開発者にとって役立ちます。
このプラットフォームは、アクセスの柔軟性という利点を提供し、エッジ AI アプリケーションを構築する部門横断的なチーム内に存在する可能性のある複数の利害関係者や開発者のニーズに応えます。
以上がエッジ AI を使用して新しい機会を発見するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究

7月5日のこのウェブサイトのニュースによると、グローバルファウンドリーズは今年7月1日にプレスリリースを発行し、自動車とインターネットでの市場シェア拡大を目指してタゴール・テクノロジーのパワー窒化ガリウム(GaN)技術と知的財産ポートフォリオを買収したことを発表した。モノと人工知能データセンターのアプリケーション分野で、より高い効率とより優れたパフォーマンスを探求します。生成 AI などのテクノロジーがデジタル世界で発展を続ける中、窒化ガリウム (GaN) は、特にデータセンターにおいて、持続可能で効率的な電力管理のための重要なソリューションとなっています。このウェブサイトは、この買収中にタゴール・テクノロジーのエンジニアリングチームがGLOBALFOUNDRIESに加わり、窒化ガリウム技術をさらに開発するという公式発表を引用した。 G
