LazyPredict: 最適な ML モデルを選択してください。
この記事では、LazyPredict を使用して単純な ML モデルを作成する方法について説明します。 LazyPredictによる機械学習モデルの作成の特徴は、大量のコードを必要とせず、パラメータを変更することなく複数モデルのフィッティングを実行し、多数のモデルの中から最もパフォーマンスの高いモデルを選択できることです。 ############まとめ#########
この記事では、LazyPredict を使用して単純な ML モデルを作成する方法について説明します。 LazyPredictによる機械学習モデルの作成の特徴は、多くのコードを必要とせず、パラメータを変更することなく複数モデルのフィッティングを実行し、多数のモデルの中から最もパフォーマンスの高いモデルを選択できることです。
この記事には次の内容が含まれています。
- はじめに
- LazyPredict モジュールのインストール
- 分類モデル 回帰モデルへの LazyPredict の実装 機械学習モデルの開発方法に革命をもたらします。 LazyPredict を使用すると、コーディングをほとんど行わずにさまざまな基本モデルを迅速に作成できるため、データに最適なモデルを選択する時間が解放されます。
- LazyPredict の主な利点は、モデルの大規模なパラメーター調整を必要とせずに、モデルの選択を容易にできることです。 LazyPredict は、最適なモデルを見つけてデータに適合させるための高速かつ効率的な方法を提供します。
- 次に、この記事を通じて LazyPredict の使用法について詳しく見ていきましょう。
!pip install lazypredict
from sklearn.datasets import load_breast_cancer
from lazypredict.Supervised import LazyClassifier
data = load_breast_cancer()
X = data.data
y= data.target
ログイン後にコピー
最適な分類子モデルを選択するために、「LazyClassifier」アルゴリズムをデプロイしましょう。これらの特性と入力パラメータはこのクラスに適しています。
from sklearn.datasets import load_breast_cancer from lazypredict.Supervised import LazyClassifier data = load_breast_cancer() X = data.data y= data.target
LazyClassifier( verbose=0, ignore_warnings=True, custom_metric=None, predictions=False, random_state=42, classifiers='all', )
from lazypredict.Supervised import LazyClassifier
from sklearn.model_selection import train_test_split
# split the data
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.3,random_state =0)
# build the lazyclassifier
clf = LazyClassifier(verbose=0,ignore_warnings=True, custom_metric=None)
# fit it
models, predictions = clf.fit(X_train, X_test, y_train, y_test)
# print the best models
print(models)
ログイン後にコピー
上記のコードを実行すると、次の結果が得られます:
from lazypredict.Supervised import LazyClassifier from sklearn.model_selection import train_test_split # split the data X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.3,random_state =0) # build the lazyclassifier clf = LazyClassifier(verbose=0,ignore_warnings=True, custom_metric=None) # fit it models, predictions = clf.fit(X_train, X_test, y_train, y_test) # print the best models print(models)
model_dictionary = clf.provide_models(X_train,X_test,y_train,y_test)

model_dictionary['LGBMClassifier']
ここでは、SimpleImputer がデータセット全体に使用され、次に StandardScaler が数値特徴に使用されていることがわかります。このデータセットにはカテゴリ特徴や順序特徴はありませんが、存在する場合は、OneHotEncoder と OrdinalEncoder がそれぞれ使用されます。 LGBMClassifier モデルは、変換と分類後にデータを受け取ります。
LazyClassifier の内部機械学習モデルは、評価とフィッティングに sci-kit-learn ツールボックスを使用します。 LazyClassifier 関数が呼び出されると、デシジョン ツリー、ランダム フォレスト、サポート ベクター マシンなどを含むさまざまなモデルが自動的に構築され、データに適合します。精度、再現率、F1 スコアなど、指定した一連のパフォーマンス指標は、これらのモデルを評価するために使用されます。トレーニング セットはフィッティングに使用され、テスト セットは評価に使用されます。
モデルを評価してフィッティングした後、LazyClassifier は評価結果の概要 (上の表を参照) と、上位モデルのリストおよび各モデルのパフォーマンス指標を提供します。モデルを手動で調整したり選択したりする必要がないため、多くのモデルのパフォーマンスを迅速かつ簡単に評価し、データに最適なモデルを選択できます。
「LazyRegressor」関数を使用して、回帰モデルに対して同じ作業を再度実行できます。回帰タスクに適したデータセットをインポートしましょう (ボストン データセットを使用)。
ここで、LazyRegressor を使用してデータを当てはめてみましょう。
from lazypredict.Supervised import LazyRegressor from sklearn import datasets from sklearn.utils import shuffle import numpy as np # load the data boston = datasets.load_boston() X, y = shuffle(boston.data, boston.target, random_state=0) X = X.astype(np.float32) # split the data X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.3,random_state =0) # fit the lazy object reg = LazyRegressor(verbose=0, ignore_warnings=False, custom_metric=None) models, predictions = reg.fit(X_train, X_test, y_train, y_test) # print the results in a table print(models)
コードの実行結果は次のとおりです:
以下是对最佳回归模型的详细描述:
model_dictionary = reg.provide_models(X_train,X_test,y_train,y_test) model_dictionary['ExtraTreesRegressor']
这里可以看到SimpleImputer被用于整个数据集,然后是StandardScaler用于数字特征。这个数据集中没有分类或序数特征,但如果有的话,会分别使用OneHotEncoder和OrdinalEncoder。ExtraTreesRegressor模型接收了转换和归类后的数据。
结论
LazyPredict库对于任何从事机器学习行业的人来说都是一种有用的资源。LazyPredict通过自动创建和评估模型的过程来节省选择模型的时间和精力,这大大提高了模型选择过程的有效性。LazyPredict提供了一种快速而简单的方法来比较几个模型的有效性,并确定哪个模型系列最适合我们的数据和问题,因为它能够同时拟合和评估众多模型。
阅读本文之后希望你现在对LazyPredict库有了直观的了解,这些概念将帮助你建立一些真正有价值的项目。
译者介绍
崔皓,51CTO社区编辑,资深架构师,拥有18年的软件开发和架构经验,10年分布式架构经验。
原文标题:LazyPredict: A Utilitarian Python Library to Shortlist the Best ML Models for a Given Use Case,作者:Sanjay Kumar
以上がLazyPredict: 最適な ML モデルを選択してください。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック

画像の注釈は、ラベルまたは説明情報を画像に関連付けて、画像の内容に深い意味と説明を与えるプロセスです。このプロセスは機械学習にとって重要であり、画像内の個々の要素をより正確に識別するために視覚モデルをトレーニングするのに役立ちます。画像に注釈を追加することで、コンピュータは画像の背後にあるセマンティクスとコンテキストを理解できるため、画像の内容を理解して分析する能力が向上します。画像アノテーションは、コンピュータ ビジョン、自然言語処理、グラフ ビジョン モデルなどの多くの分野をカバーする幅広い用途があり、車両が道路上の障害物を識別するのを支援したり、障害物の検出を支援したりするなど、幅広い用途があります。医用画像認識による病気の診断。この記事では主に、より優れたオープンソースおよび無料の画像注釈ツールをいくつか推奨します。 1.マケセンス

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

平たく言えば、機械学習モデルは、入力データを予測された出力にマッピングする数学関数です。より具体的には、機械学習モデルは、予測出力と真のラベルの間の誤差を最小限に抑えるために、トレーニング データから学習することによってモデル パラメーターを調整する数学関数です。機械学習には、ロジスティック回帰モデル、デシジョン ツリー モデル、サポート ベクター マシン モデルなど、多くのモデルがあります。各モデルには、適用可能なデータ タイプと問題タイプがあります。同時に、異なるモデル間には多くの共通点があったり、モデル進化の隠れた道が存在したりすることがあります。コネクショニストのパーセプトロンを例にとると、パーセプトロンの隠れ層の数を増やすことで、それをディープ ニューラル ネットワークに変換できます。パーセプトロンにカーネル関数を追加すると、SVM に変換できます。これです

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。
