目次
顔認識テクノロジーはどのように機能しますか?
アプリに FRT を実装する方法
1.OpenCV と Python
2. ネイティブ API
3. Microsoft Azure Cognitive Services
4. Google Cloud Vision API
概要
ホームページ テクノロジー周辺機器 AI 顔認識テクノロジーをモバイルアプリに統合する方法

顔認識テクノロジーをモバイルアプリに統合する方法

Apr 08, 2023 am 11:01 AM
AI 安全性 顔認識

FRT が注目のトピックである理由、および企業が FRT に急速に適応している理由を学びましょう。さらに、FRT がどのように機能するか、および FRT をアプリケーションに統合するさまざまな方法についても学習します。

顔認識テクノロジーをモバイルアプリに統合する方法

顔認識技術は、顔を認識し、事前に保存されている顔画像と比較および照合するために使用される技術です。顔認識技術は、主にコンピュータビジョンとパターン認識技術を利用して顔を識別し、セキュリティの確保と本人認証の容易化を主な目的としています。

顔認識技術には通常、画像の収集、顔の検出、顔の特徴の抽出、比較、認識、認証のステップが含まれます。

画像を収集する場合、カメラ、スキャナー、その他の機器を使用し、それらをコンピューターまたは他のデバイスに転送して処理できます。次に、顔認識技術を用いて画像内から顔を検出して抽出するとともに、顔の特徴点やテクスチャなどを抽出して顔特徴ベクトルを生成します。最後に、これらの特徴ベクトルがデータベースに保存されている既知の顔の特徴ベクトルと比較および照合され、顔の同一性が識別または検証されます。

顔認識テクノロジーは、セキュリティ監視、ID認証、アクセス制御、電子決済、個人デバイスのロックなど、幅広い用途に使用できます。しかし、顔認識技術は、誤認、プライバシー保護、その他の問題など、いくつかの課題にも直面しています。

1967 年に発明されたテクノロジーが、現在私たちの日常使用機器である携帯電話に採用されています。顔認識技術 (FRT) について話しています。元々は規制、予防、セキュリティのために使用されていましたが、現在では FRT を通じて携帯電話やアプリのロックを解除できるようになりました。

人工知能と生体認証技術を組み合わせて顔を認識します。 FRT テクノロジーは長くて複雑なパスワードを置き換え、ユーザーがアプリケーションに簡単にアクセスできるようにします。このテクノロジーはセキュリティ層をさらに追加し、ユーザー データを安全に保ちます。

顔認識テクノロジーを搭載していないアプリはありますか?次に、世界の FRT 市場が 2025 年までに 95 億 2,315 万米ドルに成長すると予想されていることを知っておく必要があります。その理由は、システムのセキュリティ、ユーザーの安全、そしてユーザーエンゲージメントの向上です。したがって、それをモバイルアプリケーションに統合することが非常に重要です。

顔認識テクノロジーはどのように機能しますか?

顔認識テクノロジーは、アルゴリズムを使用して顔画像またはビデオ フレームを分析し、既知の顔のデータベースと比較して個人を識別しようとします。プロセスの仕組みの概要は次のとおりです。

  1. 検出: 最初のステップは、画像またはビデオ フレーム内の顔を検出することです。これは、画像内のオブジェクトの正確な位置をその特徴に基づいて検出する分類器である Haar カスケードなどのさまざまな技術を使用して実行できます。
  2. 配置: 顔が検出されると、アルゴリズムは目、鼻、口などの主要な顔の特徴を特定して標準の位置に配置しようとします。
  3. 特徴抽出: アルゴリズムは、目の間の距離、顎の形状、唇の曲率などのさまざまな特徴を顔から抽出します。これらの機能は、顔のインプリントまたは顔のテンプレートと呼ばれる、顔のデジタル表現を作成するために使用されます。
  4. 比較: 次に、顔紋が既知の顔紋のデータベースと比較され、個人の識別が試みられます。これは、高次元空間で 2 つの顔紋間の距離を計算することによって 2 つの顔紋間の類似性を測定するユークリッド距離など、さまざまな手法を使用して実行できます。
  5. 検証または識別: 意図された使用例に応じて、アルゴリズムは、個人が本人であることを検証したり (セキュリティチェックポイントなどで)、個人の識別を試みたりすることができます。顔のみに基づいて行われます (たとえば、犯罪捜査など)。

顔認識テクノロジーには、照明や姿勢の変化、潜在的な偏見やプライバシーの問題など、さまざまな課題や制限があることは注目に値します。

アプリに FRT を実装する方法

モバイル アプリに顔認識を適用するときの大きな問題は、どの方法を使用するかということです。これを実装するには複数の方法があります。

1.OpenCV と Python

OpenCV はオープン ソースのコンピューター ビジョン ライブラリであり、Python は人気のある ML プログラミング言語です。 OpenCV と Python を使用して、アプリケーションに顔認識を実装できます。基本的な手順は次のとおりです:

  • OpenCV を使用してカメラから画像をキャプチャします。
  • 画像を前処理して顔の特徴を抽出し、顔を位置合わせします。
  • サポート ベクター マシンや畳み込みニューラル ネットワークなどの機械学習アルゴリズムを使用して、前処理されたデータでモデルをトレーニングします。
  • モデルをアプリケーションに統合して、リアルタイムで顔を認識できるようにします。

2. ネイティブ API

Android および iOS 用の顔認識ソフトウェアを作成する最も簡単な方法の 1 つは、Google および Apple のネイティブ API を利用することです。これらは手頃な価格で実装が簡単で、追加のコストや労力は必要ありません。 API をアプリケーションに統合し、信頼性の高い画像検出および認識機能を確保します。

3. Microsoft Azure Cognitive Services

Microsoft Azure は、アプリケーションに顔認識を追加するために使用できる、事前に構築された API のセットを提供します。 Azure Face API の使用方法は次のとおりです。

  • 画像を Face API に送信して、顔を検出および認識します。
  • Face API を使用して、顔の特徴や属性 (年齢、性別、感情など) を識別します。
  • API をアプリケーションに統合して、顔を認識し、関連情報を表示します。

4. Google Cloud Vision API

Google Cloud は、アプリケーションに顔の検出および認識機能を追加するために使用できる顔認識 API も提供します。 Google Cloud Vision API の使用方法は次のとおりです。

  • 画像を Vision API に送信して、顔を検出および認識します。
  • API を使用して、目や鼻などの顔の特徴を抽出します。
  • API をアプリケーションに統合して、顔を認識し、関連タスクを実行します。

これらはほんの一部の例であり、アプリケーションに顔認識を実装するために使用できる他のテクニックやフレームワークがあることを覚えておくことが重要です。顔認識テクノロジーをアプリケーションに統合する他の方法には、Amazon Rekognition、luxand.cloud API などが含まれます。テクノロジーの選択は、特定の使用例、要件、専門知識によって異なります。

概要

顔認識を適切に実装するには、使用する認識アルゴリズムの種類、データのプライバシーとセキュリティの問題、ユーザー エクスペリエンス、ハードウェア要件などの要素を評価することが重要です。機能が効果的に動作し、ユーザーのニーズを満たしていることを確認するために、徹底的なテストとユーザーのフィードバックを実施することも重要です。適切な計画と実行があれば、顔認識はあらゆるアプリケーションに強力に追加され、ユーザーにシームレスで安全なエクスペリエンスを提供できます。

以上が顔認識テクノロジーをモバイルアプリに統合する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Bytedance Cutting が SVIP スーパー メンバーシップを開始: 継続的な年間サブスクリプションは 499 元で、さまざまな AI 機能を提供 Bytedance Cutting が SVIP スーパー メンバーシップを開始: 継続的な年間サブスクリプションは 499 元で、さまざまな AI 機能を提供 Jun 28, 2024 am 03:51 AM

このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

Rag と Sem-Rag を使用したコンテキスト拡張 AI コーディング アシスタント Rag と Sem-Rag を使用したコンテキスト拡張 AI コーディング アシスタント Jun 10, 2024 am 11:08 AM

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

GenAI および LLM の技術面接に関する 7 つのクールな質問 GenAI および LLM の技術面接に関する 7 つのクールな質問 Jun 07, 2024 am 10:06 AM

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

微調整によって本当に LLM が新しいことを学習できるようになるのでしょうか: 新しい知識を導入すると、モデルがより多くの幻覚を生成する可能性があります 微調整によって本当に LLM が新しいことを学習できるようになるのでしょうか: 新しい知識を導入すると、モデルがより多くの幻覚を生成する可能性があります Jun 11, 2024 pm 03:57 PM

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

あなたが知らない機械学習の 5 つの流派 あなたが知らない機械学習の 5 つの流派 Jun 05, 2024 pm 08:51 PM

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

新しい科学的で複雑な質問応答ベンチマークと大規模モデルの評価システムを提供するために、UNSW、アルゴンヌ、シカゴ大学、およびその他の機関が共同で SciQAG フレームワークを立ち上げました。 新しい科学的で複雑な質問応答ベンチマークと大規模モデルの評価システムを提供するために、UNSW、アルゴンヌ、シカゴ大学、およびその他の機関が共同で SciQAG フレームワークを立ち上げました。 Jul 25, 2024 am 06:42 AM

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

SKハイニックスは8月6日に12層HBM3E、321層NANDなどのAI関連新製品を展示する。 SKハイニックスは8月6日に12層HBM3E、321層NANDなどのAI関連新製品を展示する。 Aug 01, 2024 pm 09:40 PM

8月1日の本サイトのニュースによると、SKハイニックスは本日(8月1日)ブログ投稿を発表し、8月6日から8日まで米国カリフォルニア州サンタクララで開催されるグローバル半導体メモリサミットFMS2024に参加すると発表し、多くの新世代の製品。フューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) の紹介。以前は主に NAND サプライヤー向けのフラッシュ メモリ サミット (FlashMemorySummit) でしたが、人工知能技術への注目の高まりを背景に、今年はフューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) に名前が変更されました。 DRAM およびストレージ ベンダー、さらに多くのプレーヤーを招待します。昨年発売された新製品SKハイニックス

SOTA パフォーマンス、厦門マルチモーダルタンパク質-リガンド親和性予測 AI 手法、初めて分子表面情報を結合 SOTA パフォーマンス、厦門マルチモーダルタンパク質-リガンド親和性予測 AI 手法、初めて分子表面情報を結合 Jul 17, 2024 pm 06:37 PM

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性​​を実証しています。 「S」で始まる関連研究

See all articles