目次
01 バイアスと分散のトレードオフ
02 ジニの不純度とエントロピー
03 適合率と再現率の曲線
04 ROC 曲線
05 弯头曲线
06三块地块
07线性和逻辑回归曲线
08支持向量机(几何理解)
09标准正态分布规则(z-分布)
概要
ホームページ テクノロジー周辺機器 AI 知っておくべきデータ サイエンス: 10 の重要な概念 + 22 のチャートの意味

知っておくべきデータ サイエンス: 10 の重要な概念 + 22 のチャートの意味

Apr 08, 2023 pm 02:41 PM
機械学習 データサイエンス

01 バイアスと分散のトレードオフ

これは、機械学習の最も重要な理論の最上位に常にランクされる概念です。機械学習 (ディープ ラーニングを含む) のほぼすべてのアルゴリズムは、バイアスと分散の間で適切なバランスを取るよう努めており、この図は 2 つの間の対立を明確に説明しています。

知っておくべきデータ サイエンス: 10 の重要な概念 + 22 のチャートの意味知っておくべきデータ サイエンス: 10 の重要な概念 + 22 のチャートの意味

02 ジニの不純度とエントロピー

ジニ (均一性の欠如の尺度) とエントロピー (ランダム性の尺度) は両方とも決定です Aツリー内のノードの不純度の尺度。

知っておくべきデータ サイエンス: 10 の重要な概念 + 22 のチャートの意味

知っておくべきデータ サイエンス: 10 の重要な概念 + 22 のチャートの意味知っておくべきデータ サイエンス: 10 の重要な概念 + 22 のチャートの意味

これら 2 つの概念については、選択を使用できるようにするために、それらの間の関係を理解することがより重要です。シナリオに適した指標。

ジニ不純物 (係数) は、一般にエントロピーよりも計算が簡単です (エントロピーには対数計算が含まれるため)。

03 適合率と再現率の曲線

適合率と再現率の曲線は、さまざまなしきい値に対する適合率と再現率のトレードオフを示します。曲線の下の面積が大きいことは、高い再現率と高い精度を表します。高い精度は低い誤警報率に関連し、高い再現率は低い誤警報率に関係します。

これは、ニーズに応じて適切なしきい値を選択するのに役立ちます。たとえば、タイプ 1 エラーを減らすことが目標の場合は、高精度を選択する必要がありますが、タイプ 2 エラーを最小限に抑えることが目標の場合は、再現率が高くなるようなしきい値を選択する必要があります。 知っておくべきデータ サイエンス: 10 の重要な概念 + 22 のチャートの意味

  • #精度の分母は変数です。つまり、偽陽性 (陽性として分類された陰性サンプル) は毎回変わります。
  • リコール分母は定数です。これは真の値の合計数を表すため、常に同じ値を保ちます。

これが、以下のグラフで精度が最後に波を示しているのに対し、再現率は常に横ばいである理由です。

知っておくべきデータ サイエンス: 10 の重要な概念 + 22 のチャートの意味

04 ROC 曲線

ROC 曲線は、すべての分類しきい値での分類モデルのパフォーマンスを示すグラフです。

この曲線は 2 つのパラメーターをプロットします:

真阳性率<br>误报率
ログイン後にコピー

知っておくべきデータ サイエンス: 10 の重要な概念 + 22 のチャートの意味

この曲線の下の面積 (AUC と呼ばれる) もパフォーマンス メトリックとして使用できます。 AUC が高いほど、モデルは優れています。

知っておくべきデータ サイエンス: 10 の重要な概念 + 22 のチャートの意味

05 弯头曲线

用于K-means算法中最优簇数的选择。WCSS(簇内平方和)是给定簇中每个点与质心之间的平方距离之和。当我们用 K(簇数)值绘制 WCSS 时,该图看起来像一个肘部(弯头)。

随着聚类数量的增加,WCSS 值将开始下降。K = 1时WCSS值最大
ログイン後にコピー

知っておくべきデータ サイエンス: 10 の重要な概念 + 22 のチャートの意味

06三块地块

它帮助我们在对高维数据执行主成分分析后,可视化每个主成分解释的变异百分比。为了选择正确数量的主成分来考虑我们的模型,我们通常会绘制此图并选择能够为我们提供足够好的总体方差百分比的值。

知っておくべきデータ サイエンス: 10 の重要な概念 + 22 のチャートの意味知っておくべきデータ サイエンス: 10 の重要な概念 + 22 のチャートの意味知っておくべきデータ サイエンス: 10 の重要な概念 + 22 のチャートの意味

07线性和逻辑回归曲线

知っておくべきデータ サイエンス: 10 の重要な概念 + 22 のチャートの意味

对于线性可分数据,我们可以进行线性回归或逻辑回归,二者都可以作为决策边界曲线/线。但是,在逻辑回归的情况下,由于通常只有 2 个类别,因此具有线性直线决策边界可能不起作用,在一条直线上值从低到高非常均匀地上升,因为它不够陡峭在值突然上升后会得到很多临界的高值或者低值,最终会错误分类。因此,"边界"区域,即概率从高到低转变的区域并不真正存在。所以一般情况下会应用 sigmoid 变换将其转换为 sigmoid 曲线,该曲线在极端情况下是平滑的,在中间几乎是线性的。

知っておくべきデータ サイエンス: 10 の重要な概念 + 22 のチャートの意味

08支持向量机(几何理解)

知っておくべきデータ サイエンス: 10 の重要な概念 + 22 のチャートの意味

09标准正态分布规则(z-分布)

均值为0,标准差为1的特殊正态分布。知っておくべきデータ サイエンス: 10 の重要な概念 + 22 のチャートの意味

经验法则指出,按照正态分布观察到的数据中有 99.7% 位于平均值的 3 个标准差以内。根据该规则,68% 的数据在一个标准差内,95% 在两个标准差内,99.7% 在三个标准差内。10学生T分布T 分布(也称为学生 T 分布)是一系列分布,看起来几乎与正态分布曲线相同,只是更短和更宽/更胖。当我们有较小的样本时,我们使用 T分布而不是正态分布。样本量越大,t 分布越像正态分布。事实上,在 30 个样本之后,T 分布几乎与正态分布完全一样。

知っておくべきデータ サイエンス: 10 の重要な概念 + 22 のチャートの意味

概要

私たちは、意思決定をしたり、適切なモデルを選択したりするための基礎となる、小さいながらも重要な概念を数多く目にすることがあります。この記事で説明されている重要な概念は、関連する図で表すことができます。これらの概念は非常に重要であり、初めて見たときにその意味を知る必要があります。上記の概念を習得した場合は、次の内容を説明してみてください。画像は次のことを表します:

知っておくべきデータ サイエンス: 10 の重要な概念 + 22 のチャートの意味

以上が知っておくべきデータ サイエンス: 10 の重要な概念 + 22 のチャートの意味の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

この記事では、SHAP: 機械学習のモデルの説明について説明します。 この記事では、SHAP: 機械学習のモデルの説明について説明します。 Jun 01, 2024 am 10:58 AM

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

透明!主要な機械学習モデルの原理を徹底的に分析! 透明!主要な機械学習モデルの原理を徹底的に分析! Apr 12, 2024 pm 05:55 PM

平たく言えば、機械学習モデルは、入力データを予測された出力にマッピングする数学関数です。より具体的には、機械学習モデルは、予測出力と真のラベルの間の誤差を最小限に抑えるために、トレーニング データから学習することによってモデル パラメーターを調整する数学関数です。機械学習には、ロジスティック回帰モデル、デシジョン ツリー モデル、サポート ベクター マシン モデルなど、多くのモデルがあります。各モデルには、適用可能なデータ タイプと問題タイプがあります。同時に、異なるモデル間には多くの共通点があったり、モデル進化の隠れた道が存在したりすることがあります。コネクショニストのパーセプトロンを例にとると、パーセプトロンの隠れ層の数を増やすことで、それをディープ ニューラル ネットワークに変換できます。パーセプトロンにカーネル関数を追加すると、SVM に変換できます。これです

宇宙探査と人類居住工学における人工知能の進化 宇宙探査と人類居住工学における人工知能の進化 Apr 29, 2024 pm 03:25 PM

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

学習曲線を通じて過学習と過小学習を特定する 学習曲線を通じて過学習と過小学習を特定する Apr 29, 2024 pm 06:50 PM

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 Jun 03, 2024 pm 01:25 PM

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

説明可能な AI: 複雑な AI/ML モデルの説明 説明可能な AI: 複雑な AI/ML モデルの説明 Jun 03, 2024 pm 10:08 PM

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります

あなたが知らない機械学習の 5 つの流派 あなたが知らない機械学習の 5 つの流派 Jun 05, 2024 pm 08:51 PM

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

フラッシュ アテンションは安定していますか?メタとハーバードは、モデルの重みの偏差が桁違いに変動していることを発見しました フラッシュ アテンションは安定していますか?メタとハーバードは、モデルの重みの偏差が桁違いに変動していることを発見しました May 30, 2024 pm 01:24 PM

MetaFAIR はハーバード大学と協力して、大規模な機械学習の実行時に生成されるデータの偏りを最適化するための新しい研究フレームワークを提供しました。大規模な言語モデルのトレーニングには数か月かかることが多く、数百、さらには数千の GPU を使用することが知られています。 LLaMA270B モデルを例にとると、そのトレーニングには合計 1,720,320 GPU 時間が必要です。大規模なモデルのトレーニングには、これらのワークロードの規模と複雑さにより、特有のシステム上の課題が生じます。最近、多くの機関が、SOTA 生成 AI モデルをトレーニングする際のトレーニング プロセスの不安定性を報告しています。これらは通常、損失スパイクの形で現れます。たとえば、Google の PaLM モデルでは、トレーニング プロセス中に最大 20 回の損失スパイクが発生しました。数値的なバイアスがこのトレーニングの不正確さの根本原因です。

See all articles