TensorFlow で機械学習開発ができるのはなぜですか?
機械学習は複雑な主題ですが、機械学習フレームワーク (Google の TensorFlow など) により、データの取得、モデルのトレーニング、予測の提供、将来の結果の改善のプロセスが簡素化されるため、機械学習の実装は以前よりもはるかに困難ではなくなりました。 。
Google Brain チームによって作成され、2015 年に初めて一般公開された TensorFlow は、数値コンピューティングおよび大規模機械学習用のオープンソース ライブラリです。 TensorFlow は、幅広い機械学習および深層学習のモデルとアルゴリズム (ニューラル ネットワークとも呼ばれる) をバンドルし、共通のプログラミング メタファーを通じてそれらを活用できるようにします。 Python または JavaScript を使用してアプリケーションを構築し、それらを高性能 C で実行するための便利なフロントエンド API を提供します。
TensorFlow は、PyTorch や Apache MXNet などのフレームワークと競合して、手書き数字分類、画像認識、単語埋め込み、リカレント ニューラル ネットワーク、機械翻訳用のシーケンスツーシーケンス モデル、自然言語のためのディープ ニューラル ネットワークをトレーニングおよび実行します。処理および PDE (偏微分方程式) ベースのシミュレーション。何よりも、TensorFlow はトレーニングに同じモデルを使用して、大規模な生産予測をサポートします。
TensorFlow には、独自のプロジェクトで使用できる事前トレーニングされたモデルの広範なライブラリもあります。 TensorFlow Model Park のコードを、独自のモデルをトレーニングするためのベスト プラクティスの例として使用することもできます。
TensorFlow の仕組み
TensorFlow を使用すると、開発者はデータ フロー グラフ (データがグラフまたは一連の処理ノード内をどのように移動するかを記述する構造) を作成できます。グラフ内の各ノードは数学的演算を表し、ノード間の各接続またはエッジは多次元データ配列、つまりテンソルです。
TensorFlow アプリケーションは、ローカル マシン、クラウド内のクラスター、iOS および Android デバイス、CPU、GPU などの最も便利なターゲット上で実行できます。 Google 独自のクラウドを使用している場合は、Google のカスタム TensorFlow Processing Unit (TPU) チップ上で TensorFlow を実行して、さらに高速化できます。ただし、TensorFlow によって作成された結果のモデルは、予測を提供するために使用されるほとんどのデバイスにデプロイできます。
TensorFlow 2.0 は 2019 年 10 月にリリースされ、ユーザーのフィードバックに基づいてフレームワークにさまざまな改良が加えられ、使いやすく (たとえば、モデルのトレーニングに比較的シンプルな KerasAPI を使用することで) パフォーマンスが向上しました。新しい API のおかげで分散トレーニングの実行が容易になり、TensorFlow Lite のサポートにより、より多様なプラットフォームにモデルをデプロイできるようになります。ただし、新しい TensorFlow 2.0 の機能を最大限に活用するには、TensorFlow の以前のバージョン用に書かれたコードを、場合によってはわずかに、場合によっては大幅に書き直す必要があります。
トレーニングされたモデルを使用すると、REST または gRPC API を使用して、Docker コンテナーを通じてサービスとして予測を提供できます。より高度なサービス シナリオの場合は、Kubernetes を使用できます。
Python で TensorFlow を使用する
TensorFlow は、Python 言語を通じてこれらすべての機能をプログラマに提供します。 Python は学習と使用が簡単で、高レベルの抽象化を結合する方法を表現する便利な方法を提供します。 TensorFlow は Python バージョン 3.7 ~ 3.10 でサポートされており、以前のバージョンの Python でも動作する可能性がありますが、動作することは保証されていません。
TensorFlow のノードとテンソルは Python オブジェクトであり、TensorFlow アプリケーション自体も Python アプリケーションです。ただし、実際の数学演算は Python では実行されません。 TensorFlow を通じて提供される変換ライブラリは、高性能 C バイナリとして作成されます。 Python は、さまざまな部分間のフローを単純に指示し、それらを接続するための高レベルのプログラミング抽象化を提供します。
TensorFlow の高度な作業 (ノードとレイヤーの作成とそれらのリンク) では、Keras ライブラリを使用します。 Keras API は一見シンプルです。基本的な 3 層モデルは 10 行未満のコードで定義でき、同じトレーニング コードに必要なコードはわずか数行です。ただし、「ベールを解除」して、独自のトレーニング ループを作成するなど、よりきめの細かい作業を実行したい場合は、それを行うことができます。
TensorFlow と JavaScript の使用
Python は、TensorFlow と機械学習を操作するための最も人気のある言語です。しかし、JavaScript は現在、TensorFlow のファーストクラス言語でもあり、JavaScript の大きな利点の 1 つは、Web ブラウザーがあればどこでも実行できることです。
TensorFlow.js (JavaScript TensorFlow ライブラリと呼ばれる) は、WebGL API を使用して、システムで利用可能な GPU による計算を高速化します。 WebAssembly バックエンドを使用して実行することもできます。CPU のみで実行する場合、通常の JavaScript バックエンドよりも高速ですが、可能な限り GPU を使用することをお勧めします。事前に構築されたモデルを使用すると、単純なプロジェクトを立ち上げて実行でき、物事がどのように機能するかを理解できます。
TensorFlow Lite
トレーニングされた TensorFlow モデルは、iOS や Android システムなどのエッジ コンピューティングやモバイル デバイスにデプロイすることもできます。 TensorFlow Lite ツールセットは、モデルのサイズと精度をトレードオフできるようにすることで、そのようなデバイス上で適切に実行できるように TensorFlow モデルを最適化します。より小さいモデル (つまり、12MB 対 25MB、または 100MB) は精度が低くなりますが、通常、精度の低下は小さく、モデルの速度とエネルギー効率によって相殺されます。
TensorFlow を使用する理由
TensorFlow が機械学習開発に提供する最大のメリットは抽象化です。開発者は、アルゴリズムの実装の詳細を扱ったり、ある関数の出力を別の関数の入力に接続する正しい方法を見つけたりするのではなく、アプリケーション ロジック全体に集中できます。 TensorFlow は舞台裏で詳細を処理します。
TensorFlow は、TensorFlow アプリケーションをデバッグして理解する必要がある開発者に大きな利便性を提供します。各グラフ操作は、グラフ全体を単一の不透明なオブジェクトとして構築して一度に評価するのではなく、個別かつ透過的に評価および変更できます。このいわゆる「即時実行モード」は、TensorFlow の古いバージョンではオプションとして利用可能でしたが、現在は標準になっています。
TensorBoard Visualization Suite を使用すると、インタラクティブな Web ベースのダッシュボードを通じてグラフがどのように実行されているかを検査および分析できます。 Tensorboard.dev サービス (Google がホスト) を使用すると、TensorFlow で記述された機械学習実験をホストして共有できます。無料で使用して、最大 100M のスカラー、1GB のテンソル データ、および 1GB のバイナリ オブジェクト データを保存できます。 (Tensorboard.dev でホストされているデータはすべて公開されているため、機密性の高いプロジェクトには使用しないでください。)
TensorFlow は、Google の一流の商業組織のサポートからも多くの利点を得ています。 Google はプロジェクトの急速な成長を推進し、TensorFlow のデプロイと使用を容易にする多くの重要な製品を作成しました。 Google Cloud のパフォーマンスを高速化するための上記の TPU チップは、ほんの一例にすぎません。
決定論的モデル トレーニングに TensorFlow を使用する
TensorFlow 実装の詳細により、一部のトレーニング ジョブで完全に決定論的モデル トレーニング結果を取得することが困難になります。場合によっては、まったく同じデータが提供されている場合でも、あるシステムでトレーニングされたモデルが別のシステムでトレーニングされたモデルとわずかに異なることがあります。この違いの理由は複雑です。1 つの理由は、乱数がどのように、どこにシードされるかということです。もう 1 つは、GPU 使用時の非決定的な動作に関係しています。 TensorFlow の 2.0 ブランチには、数行のコードでワークフロー全体にわたって決定論を有効にするオプションがあります。ただし、この機能にはパフォーマンスが犠牲になるため、ワークフローをデバッグする場合にのみ使用してください。
TensorFlow は PyTorch、CNTK、MXNet と競合します
TensorFlow は他の多くの機械学習フレームワークと競合します。 PyTorch、CNTK、MXNet は、同じニーズの多くに応える 3 つの主要なフレームワークです。 TensorFlow と比較して、どこが際立っているのか、どこが劣っているのかを簡単に見てみましょう:
- PyTorch は Python で構築されており、TensorFlow と他の多くの類似点があります: 内部のハードウェア アクセラレーション コンポーネント、高度にインタラクティブな開発このモデルでは、すぐに使える設計作業が可能で、すでに多くの有用なコンポーネントが含まれています。多くの場合、短期間で稼働させる必要があるプロジェクトの迅速な開発には PyTorch が適していますが、大規模なプロジェクトやより複雑なワークフローには TensorFlow の方が適しています。
- CNTK は Microsoft Cognitive Toolkit であり、グラフ構造を使用してデータ フローを記述する点では TensorFlow に似ていますが、主に深層学習ニューラル ネットワークの作成に焦点を当てています。 CNTK は、多くのニューラル ネットワーク ジョブをより高速に処理でき、より幅広い API (Python、C、C#、Java) を備えています。しかし現時点では、TensorFlow ほど学習やデプロイは簡単ではありません。また、TensorFlow は GNU GPL 3.0 ライセンスの下でのみ利用可能ですが、TensorFlow はより自由な Apache ライセンスの下で利用可能です。そして、CNTKにはそれほど前向きな展開はありません。最後のメジャー バージョンは 2019 年でした。
- Amazon が AWS の主要な深層学習フレームワークとして採用した Apache MXNet は、複数の GPU および複数のマシンにわたってほぼ直線的に拡張します。 MXNet は、Python、C、Scala、R、JavaScript、Julia、Perl、Go などの幅広い言語 API もサポートしていますが、そのネイティブ API は TensorFlow ほど使いやすくはありません。また、ユーザーと開発者のコミュニティははるかに小規模です。
元のタイトル: TensorFlow とは?機械学習ライブラリの説明
以上がTensorFlow で機械学習開発ができるのはなぜですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









画像の注釈は、ラベルまたは説明情報を画像に関連付けて、画像の内容に深い意味と説明を与えるプロセスです。このプロセスは機械学習にとって重要であり、画像内の個々の要素をより正確に識別するために視覚モデルをトレーニングするのに役立ちます。画像に注釈を追加することで、コンピュータは画像の背後にあるセマンティクスとコンテキストを理解できるため、画像の内容を理解して分析する能力が向上します。画像アノテーションは、コンピュータ ビジョン、自然言語処理、グラフ ビジョン モデルなどの多くの分野をカバーする幅広い用途があり、車両が道路上の障害物を識別するのを支援したり、障害物の検出を支援したりするなど、幅広い用途があります。医用画像認識による病気の診断。この記事では主に、より優れたオープンソースおよび無料の画像注釈ツールをいくつか推奨します。 1.マケセンス

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

平たく言えば、機械学習モデルは、入力データを予測された出力にマッピングする数学関数です。より具体的には、機械学習モデルは、予測出力と真のラベルの間の誤差を最小限に抑えるために、トレーニング データから学習することによってモデル パラメーターを調整する数学関数です。機械学習には、ロジスティック回帰モデル、デシジョン ツリー モデル、サポート ベクター マシン モデルなど、多くのモデルがあります。各モデルには、適用可能なデータ タイプと問題タイプがあります。同時に、異なるモデル間には多くの共通点があったり、モデル進化の隠れた道が存在したりすることがあります。コネクショニストのパーセプトロンを例にとると、パーセプトロンの隠れ層の数を増やすことで、それをディープ ニューラル ネットワークに変換できます。パーセプトロンにカーネル関数を追加すると、SVM に変換できます。これです

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります
