合成データは人工知能を向上させることができるでしょうか?
人工知能 (AI) は指数関数的な進歩によりさらに高度になってきましたが、この最新テクノロジーの限界は依然として存在します。
では、合成データは人工知能に関連するすべての問題を解決できるのでしょうか?
第 4 次産業革命では、あらゆる業界が人工知能 (AI) や機械学習 (ML) などの最新テクノロジーの可能性を発見しました。
他のほぼすべての組織は、より効率的なビジネス プロセスを作成し、より高い顧客満足度を確保するために AI を導入しています。しかし、スタートアップ企業、SOHO、中小企業 (SMB) は、AI を導入する際に、コールド スタート問題として知られる大きな問題に直面します。一般にスタートアップや中小企業にはビッグデータを収集するリソースがありませんが、コールドスタートの問題は本質的にそのような関連データの欠如にあります。
一方、業界大手はすでに実世界のデータを収集し、それを自社の AI システムのトレーニングに適用するためのリソースを持っています。したがって、中小企業が勝つ可能性は非常に高いです。この場合、合成データが必要な実現要因となる可能性があります。
合成データは、データ駆動型のビジネス モデルの推進力となる可能性があります。さらに、合成データは実際のデータと同じ結果を生み出すことが研究で示されています。合成データは、実際のデータよりも安価で、処理にかかる時間が短いと考えられています。したがって、合成データの出現により、現在大企業が独占している競争条件が平準化され、中小企業や新興企業に有利になる可能性があります。
合成データの利点を発見する
合成データは、データが実際の過去のデータに可能な限り近いことを保証するために、ユーザー指定のパラメーターに基づいてコンピューターで生成された人工データです。通常、Unreal Engine や Unity などのゲーム エンジンは、自動運転車などの AI ベースのアプリケーションをテストおよびトレーニングするためのシミュレーション環境としてよく使用されます。合成データに基づいて AI 駆動のアプリケーションを開発することには多くの利点があります。
同様に、合成データは、実際のデータやイベントが欠如している将来発生する可能性のあるシナリオに備えて、新規または既存のシステムをトレーニングすることもできます。このアプローチにより、研究者はより未来的な AI アプリケーションを開発できます。さらに、合成データを使用した AI システムの再トレーニングは、正確な実世界のデータを収集するよりも合成データの生成が簡単であるため、より簡単です。
これらの利点により、合成データは自動運転車のテストとトレーニングに利用できる代替手段となっています。多くの自動運転車開発者は、GTA V のようなシミュレートされたゲーム環境を使用して、AI ベースのシステムをトレーニングしています。同様に、May Mobility は、合成データを使用して車両をトレーニングすることで、自動運転マイクロモビリティ サービスを構築しています。
Waymo という別の自動運転車開発会社は、すでに模擬道路で 50 億マイル、実際の道路でさらに 800 万マイルを走行して自動運転車をテストしました。合成データのアプローチにより、開発者は模擬道路で自動運転車をテストできるため、実際の道路で直接テストするよりもはるかに安全です。
4. データの柔軟性の向上
実際のデータの取得は、アノテーションの料金を支払い、著作権侵害を確実に回避する必要がある、面倒なプロセスです。さらに、実際のデータは、特定のドメインに十分な履歴データがある特定のシナリオでのみ使用できます。実際のデータとは異なり、合成データは、オブジェクト、シーン、イベント、人物のあらゆる組み合わせを瞬時に表現できます。合成データは、ニッチなアプリケーションを発見できる一般的なデータセットを生成できます。その結果、研究者は合成データを使用して無限の可能性を探ることができます。いくつかの新興企業は、顧客の要件を満たすトレーニング データ セットを開発することで、オープン データ エコノミーを構築しています。
5. 合成データの限界を探る
合成データは AI が未発見の領域に到達するのに役立ちますが、その限界が主流の展開にとって大きな障害となる可能性があります。まず、合成データは現実世界のデータのいくつかのプロパティをシミュレートしますが、元のデータを正確に複製するわけではありません。このような合成データをモデル化する場合、AI システムは実際のデータの共通の傾向と状況のみを検索します。したがって、現実世界のデータのまれなケースに含まれるまれなシナリオは、合成データには決して含まれない可能性があります。
さらに、研究者はデータが正確かどうかを確認するメカニズムをまだ開発していません。実際のデータの欠陥を見つけてそれらを減らすことは、合成データを使用するよりも簡単です。 AI 駆動のシステムには、意図しないバイアスを促進する「ダークサイド」がすでに存在します。合成データを使用して、このバイアスの範囲と影響を予測するのは時期尚早である可能性があります。
6. 課題の克服
組織は、合成データがかなり新しい発見であることを理解する必要があります。このようなデータの効率と正確性は、現在の業界標準に照らして評価されていません。したがって、合成データをスタンドアロン データ ソースと見なすべきではありません。特にヘルスケア アプリケーションや自動運転車など、安全性の懸念に直面しているアプリケーションでは、合成データを現実世界のデータと組み合わせて AI システムを開発する必要があります。しかし、小売業のアプリケーションはリスク要因が低く、合成データに簡単に依存できます。
テスト目的の場合、合成データは実行可能で安価なソリューションです。ただし、他の目的では、合成データをスタンドアロン ソリューションとして使用する前に、AI システムの結果を徹底的に調査および分析する必要があります。研究が進めば、さまざまな操作において合成データの信頼性が高まる可能性があります。
以上が合成データは人工知能を向上させることができるでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

先週、社内の辞任と社外からの批判が相次ぐ中、OpenAIは内外のトラブルに見舞われた。 - 未亡人姉妹への侵害が世界中で白熱した議論を巻き起こした - 「覇権条項」に署名した従業員が次々と暴露 - ネットユーザーがウルトラマンの「」をリストアップ噂の払拭: Vox が入手した漏洩情報と文書によると、アルトマンを含む OpenAI の上級幹部はこれらの株式回収条項をよく認識しており、承認しました。さらに、OpenAI には、AI セキュリティという深刻かつ緊急の課題が直面しています。最近、最も著名な従業員2名を含むセキュリティ関連従業員5名が退職し、「Super Alignment」チームが解散したことで、OpenAIのセキュリティ問題が再び注目を集めている。フォーチュン誌は OpenA を報じた。

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究
