心理測定分析のための人工知能とビッグデータの使用
人工知能とビッグデータを心理測定分析に使用する
人工知能 (AI) とビッグデータは、採用担当者が個人の性格や行動スタイルをより深く理解するのに役立ちます。
おそらく、ビッグ データの最大の受益者は人工知能の分野です。
これら 2 つの手法を組み合わせると、心理測定分析を次のレベルに引き上げることができます。心理測定における人工知能とビッグデータの影響を研究することは、この分野の将来の改善にとって非常に重要です。
心理測定的評価が影響を与える可能性がある分野の数は、本当に気が遠くなるようなものです。採用時の求職者の評価から全国キャンペーンの実施、マーケティングから法執行まで、心理測定による評価は、大勢の人々の脈拍や個人の性格特性を理解する上で重要な役割を果たします。政党であれ企業であれ、組織が心理測定のビッグデータ機能を最大限に活用すれば、それぞれの戦場でほぼ確実な優位性を得ることができます。
心理測定における人工知能とビッグデータの応用分野
周知のとおり、デジタル化は人々の生活のほぼすべての側面に浸透しています。したがって、人工知能やビッグデータなどのテクノロジーは、心理測定の分野にも当然影響を及ぼします。人工知能の驚異的なデータ処理能力と分析能力は、今日ではよく知られています。これらの特性をビッグデータの包括的な性質と組み合わせるのは、心理測定学の成長と発展のためのロケット燃料を提供するようなものです。人工知能とビッグデータが心理測定で何を (またはどの程度) 達成できるのか疑問に思いませんか? 以下にいくつかの答えがあります:
1. 候補者の募集
心理テストは通常、過去に行われてきました。ロジスティック回帰分析を使用します。これらのテクノロジーには利点がありますが、この分野における人工知能(ビッグデータによって補完される)の成果にはまったく匹敵しません。たとえば、人事リーダーは機械学習を使用して候補者の長所と短所を特定できます。これを行うために、人事リーダーは面接またはリモート面接中に候補者に一連の質問をします。候補者が質問に答えるとき、候補者の態度、口調、表情はすべて AI カメラで監視できます。面接後、採用担当者は AI を使用して候補者の視点と判断、共感と心の知能指数、エンゲージメント、意思決定、監督の能力を評価します。これらの属性は、候補者がどのように協力して問題解決に取り組み、プレッシャーのかかる状況で決定的な役割を果たすかを理解するために判断および評価されます。
意思決定能力と問題解決能力に加えて、厳格な期限内にそれぞれの仕事を完了する候補者の能力も、人工知能とビッグデータの助けを借りて評価できます。面接や採用演習に加えて、候補者の性格を評価するために他の手法も使用できます。たとえば、採用担当者は候補者のソーシャル メディア ページを閲覧して、候補者の性格特性や一般的なトピックに関する意見を知ることができます。誰かのソーシャルメディアページを閲覧することは、その人の意見を否定的に評価するものであってはなりません。代わりに、これは候補者が自分の考えを口頭または視覚的にどのように表現するかを示す良い尺度です。つまり、応募者のコミュニケーション能力は、このようにしてある程度判断できるのです。人工知能とビッグデータは、採用担当者がこのデータを Web 上で見つけ、パターン認識と異常認識を通じて処理して候補者の潜在的な性格特性を見つけるのに役立ちます。
これに加えて、機械学習をさらに使用して、拡張現実ツールを候補者の採用に統合することもできます。拡張現実ツールを使用すると、現実世界のようなシミュレーションを作成して、実際の運用上の危機に対処する候補者の能力を評価できます。人工知能はビッグデータの膨大なリポジトリを使用して、このテストでの受験者の成績を評価します。拡張現実は、候補者の採用と選考にまったく新しい次元を加えます。これは、人工知能の力と驚異的な範囲のビッグデータなしでは不可能です。
2. 選挙キャンペーン
ケンブリッジ アナリティカが 2016 年の選挙でドナルド トランプ元大統領の勝利にどのように貢献したかを聞いたことがあるかもしれません。トランプ氏の選挙運動は、これまでで最もデータ主導型の政治運動の一つだった。ただし、探究する前に、心理測定分析の主な目的を理解することが重要です。
心理テストは、まず個人 (または人々のグループ) に関する情報と、さまざまなトピックに関する好き嫌い、見解や意見を取得するために使用されます。データ コレクターがこの情報をどのように処理するかは、必要な最終結果のタイプによって異なります。この場合、ビッグデータと人工知能は、州または国全体に心理的評価の範囲を拡大するのに役立ちます。特定の製品やサービスを購入するよう説得するために、人の性格を調査できることが証明されています。さらに、この情報は、選挙で特定の候補者または政党に投票するよう個人を説得するために使用できます。
2016 年の米国大統領選挙に影響を与えたケンブリッジ アナリティカの役割を見てみましょう。
このテクノロジー企業は、選挙運動前からトランプ氏の選挙運動に関与していた兆候がある。このグループは選挙で有利になるために心理測定人工知能とビッグデータを利用しました。これまでの候補者は主に人口動態に関する議論を活用し、他の有権者の問題の中核に焦点を当てていたため、このアプローチは特に画期的である。 Cambridge Analytica は、高度な心理測定をミックスに取り入れて、肯定的な最終結果を生み出します。
選挙で成功するために、この組織は、OCEAN モデル、AI 主導のシステムとモデル、高度なビッグデータを個人に攻撃する概念などの一般的なツールに加えて、行動科学と有権者の監視を使用しています。分析する。
このプロセスの初期段階では、組織は Facebook などの有名な組織のソーシャル メディア ページから何百万人もの個人に関する大量のデータを購入する必要がありました。このような記録に加えて、保留中のメンテナンス請求書、土地や不動産の登記簿、ショッピングデータ、製品やサービスの購入履歴などの詳細も収集され、慎重に分析されます。メッセージが長くて幅広い場合、それは複数の人々と各人のいくつかの側面をカバーしていることを意味します。いわばビッグデータです。このすべての情報を収集した後、英国の会社はデータを集約して整理しました。さらに、この組織は、ビッグ 5 の性格特性に基づいて各人を別々に分類する人工知能ツールを導入しました。
この情報に基づいて、共和党大統領候補者は、より脆弱で操作されやすいスピーチで有権者に語りかけました。選挙のスピーチですら、社会のあらゆる層の人々の共感を呼ぶように注意深く調整され、調整されています。同社は、高度なデータ主導の取り組みにより、500 万ドルを超える収益を生み出しています。しかし、トランプ氏の圧勝の本当の主役は人工知能とビッグデータだった。
3. 製品とサービスのマーケティング
前述したように、特定の的を絞ったマーケティングを行うために、人工知能とビッグデータを使用して、潜在的な顧客の特徴、好み、好みを理解することができます。広告が受信箱に溢れています。マーケティング目的で、組織は顧客のソーシャル メディア ページ、デジタル小売業者の購入履歴、場合によってはテキスト メッセージなどのビッグ データを使用します。
心理測定におけるビッグデータ使用の課題
人工知能と比較して、上記の応用分野ではビッグデータがおそらくより重要です。心理測定における人工知能とビッグデータの応用分野の一部を見てきたところで、組織が性格分析にビッグデータを使用する際に直面する可能性のある課題を以下に示します:
1. ビッグデータがもたらすものこの問題は、分析のために AI システムに提供される情報の信頼性に関係します。ビッグデータの信頼性は、既存のデータ、テクノロジー、人工知能アルゴリズムによって深刻な影響を受けるでしょう。ビッグデータの混沌と複雑さは、AI システムが予測や高度な意思決定を行う際に問題を引き起こす可能性があります。
2. 人工知能における偏見は常にテクノロジーが克服する必要がある問題です。ビッグデータの追加により、AI 出力の公平性が依然として問題となる可能性があります。また、人工知能やビッグデータの影響範囲は、インターネットという閉じた温室によってある程度限定されているとも言えます。したがって、多くの場合、経済的に恵まれない個人や世帯に関する情報を含めるにはビッグ データが不十分です。これらの人々はインターネットにアクセスできず、コンピューティング デバイスを購入できないためです。
3. 信頼性と公平性の次には、ユーザーのプライバシーという課題が生じます。ご覧のとおり、人工知能とビッグデータは、最終結果を生み出すためにユーザー データを (場合によってはユーザーの署名付き同意なしで) 広範囲に利用します。したがって、ビッグデータと人工知能は、この点で倫理的なジレンマに直面し続けています。
人工知能とビッグデータの無数の機能は、心理測定の分野にとって重要です。ただし、さらなる改善のためには対処する必要があるいくつかの課題があります。しかし、心理測定がほぼ継続的に発展していることを考えると、これらの技術が将来、心理測定の範囲をさらに深めることができることは確かです。その間、ビッグデータと人工知能は、上記の目的などを達成するために、心理測定研究の分野に留まり続けるでしょう。
以上が心理測定分析のための人工知能とビッグデータの使用の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究

7月5日のこのウェブサイトのニュースによると、グローバルファウンドリーズは今年7月1日にプレスリリースを発行し、自動車とインターネットでの市場シェア拡大を目指してタゴール・テクノロジーのパワー窒化ガリウム(GaN)技術と知的財産ポートフォリオを買収したことを発表した。モノと人工知能データセンターのアプリケーション分野で、より高い効率とより優れたパフォーマンスを探求します。生成 AI などのテクノロジーがデジタル世界で発展を続ける中、窒化ガリウム (GaN) は、特にデータセンターにおいて、持続可能で効率的な電力管理のための重要なソリューションとなっています。このウェブサイトは、この買収中にタゴール・テクノロジーのエンジニアリングチームがGLOBALFOUNDRIESに加わり、窒化ガリウム技術をさらに開発するという公式発表を引用した。 G
