清華大学、コース学習用初のオープンソース ライブラリである CurML をリリース
機械学習の開発プロセスでは、人間の学習方法がさまざまなアルゴリズムの設計に影響を与えることがよくあります。人間の学習の重要なパラダイムとして、コースを通じた学習は機械学習から借用され、カリキュラム学習と呼ばれる研究の方向性を形成しています。
一般に、人間の教育は高度に組織化された授業を通じて完了します。各コースまたは科目は単純な内容から始まり、徐々により複雑な概念を生徒に提示します。たとえば、大学で微積分の概念を受け入れる前に、学生はまず小学校で算数を、中学校で関数を、高校で微分を学ぶ必要があります。ただし、人間の教育とは異なり、従来の機械学習モデルのトレーニングでは、データ サンプルとモデルの現在の学習ステータス間の複雑さの違いを無視して、データ サンプルをモデルにランダムに入力する必要があります。したがって、機械学習の分野では、簡単なものから難しいものまで人間の学習を正確に模倣し、モデルにより良いトレーニング戦略を提供し、それによってモデルのパフォーマンスを向上させるカリキュラム学習が提案されました。
#コース学習コンセプトマップ
現在カリキュラム学習は、画像分類、ターゲット検出、セマンティック セグメンテーション、機械翻訳、音声認識、音声強化、ビデオ質疑応答などを含む、機械学習のさまざまなタスクで広く使用されています。また、教師あり、教師なし、半教師ありでも使用されます。教師あり学習、強化学習、その他のシナリオは多くの注目と研究を集めています。
コース学習の応用やシナリオがますます豊富になるにつれ、研究者や研究者による深い探求を促進するために、この分野について詳細な整理と要約を行うことが特に必要です。ユーザーのアプリケーションエクスペリエンスを向上させます。
したがって、コース学習に関する多数の学術論文の出版の蓄積と基盤に基づいて、清華大学の朱文武教授が率いるメディアおよびネットワークビッグデータ研究室、研究室メンバーの王Xin IEEE TPAMI はカリキュラム学習に関するレビュー論文を発表し、さらに研究室は世界初のカリキュラム学習用のオープンソース ライブラリである CurML (Curriculum Machine Learning) をリリースしました。
Zhu Wenwu教授とWang Xin助研究員のカリキュラム学習研究活動には、都市の関心のある場所の推奨に適用されるカリキュラムのメタ学習手法、ノイズの多い複数のフィードバック情報に基づくカリキュラムのデカップリング製品推奨、共有パラメータが含まれます。コース学習に基づくニューラルアーキテクチャ探索、コース難易度適応に基づく組み合わせ最適化問題解決など。研究結果は、SIGKDD、NeurIPS、ACM MM などのハイレベルな国際機械学習会議で発表されています。
##研究結果のフレームワーク図
コース学習レビューペーパーは、創発、定義、理論、応用など、コース学習のあらゆる側面を包括的にレビューし、統一されたコース学習フレームワークを設計し、コース学習アルゴリズムを、コース内のコアコンポーネントに基づいて 2 つの主要なカテゴリと複数のカテゴリに分割します。このサブカテゴリは、カリキュラム学習と他の機械学習概念の違いと関連性を区別し、この分野が直面する課題と将来の研究の方向性を指摘します。
#コース学習方法分類コース学習オープンソース ライブラリ CurML は、コース学習アルゴリズムのサポート プラットフォームです。10 を超えるコース学習アルゴリズムが統合されており、ノイズの多いアプリケーション シナリオとノイズのないアプリケーション シナリオの両方をサポートしているため、研究者やユーザーが再現、評価、比較、選択することが容易になります。コース学習のアルゴリズム。
CurML のメイン モジュールは CL Trainer で、これは 2 つのサブモジュール Model Trainer と CL Algorithm で構成され、これら 2 つは 5 つのインターフェイス関数を通じて相互作用し、コース学習ガイダンス用のマシンを実現します。学習過程。
#CurML フレームワーク図
メイン モジュール: CL Trainerこのモジュールは、オープンソース ライブラリ全体の主要部分です。このモジュールを呼び出すことで、ユーザーはわずか数行のコードでコース学習アルゴリズムを実装できます。データセット、モデル、ハイパーパラメータが与えられると、モジュールは一定期間トレーニングし、トレーニングされたモデルパラメータとタスクのテスト結果を出力します。このモジュールは主に使いやすさの要件を満たすように設計されているため、高度にカプセル化されており、コース学習アルゴリズムを使用したいが、特定の実装の詳細は気にしないユーザーに提供されます。
サブモジュール 1: モデル トレーナー
このモジュールは、次のような一般的な機械学習プロセスを完了するために使用されます。トレーニングとして 画像分類器または言語モデル。同時に、2 番目のサブモジュール CL アルゴリズムと対話するための 5 つのインターフェイス関数の位置を予約し、カスタム入力関数もサポートします。
#サブモジュール 2: CL アルゴリズム
このモジュールは、CurML でサポートされるすべてのコース学習アルゴリズムをカプセル化します。
CurML フローチャート #インターフェイス関数: data_prepare
この関数は、モデル トレーナー モジュールから CL アルゴリズム モジュールにデータ セット情報を提供するために使用されます。多くのコース学習アルゴリズムでは、データ サンプルの難易度をより適切に判断するためにデータ セットを全体的に理解する必要があるため、このインターフェイス機能が必要です。
インターフェイス関数: model_prepare
この関数は data_prepare に非常に似ていますが、違いは転送しないことです。データセット情報 モデルアーキテクチャ、パラメータオプティマイザー、学習率調整器など、モデルトレーニングに関連する情報です。多くのコース学習アルゴリズムは、これらの要素を調整することによって機械学習をガイドします。
#インターフェース関数: data_curriculum
この関数は、データ サンプルの難易度を計算するために使用され、それに基づいてデータの難易度およびモデルの現在の状態により、モデルに適切なデータが提供され、ほとんどのコースは同様の考え方を持っています。
#インターフェース関数:model_curriculum
この関数は、モデルを更新し、モデルから取得したモデルの精度を調整するために使用されます。データ サンプル。情報量がモデルの学習を間接的に導きます。現時点では、このようなアルゴリズムの数はまだ少ないですが、CurML はそのようなアルゴリズムの実装もサポートしています。
#インターフェイス関数: loss_curriculum
この関数は、損失関数値の重み付けを変更するために使用され、間接的な調整は次のとおりです。モデルに対するデータの影響: 損失値の重み付けは本質的にデータのソフト サンプリングであるため、このタイプのアルゴリズムはコース学習でより一般的です。 近年の 10 を超えるコース学習メソッドの要約を通じて、さまざまな種類のコース学習アルゴリズムを上記のモジュールとインターフェイス パラメーターを使用して統合して実装できるため、公平なシナリオで使用され、タスクの下でコース学習アルゴリズムを評価、比較、選択します。
今後の見通し
CurML の研究開発チームは、コース学習の開発と応用に対するさらなるサポートを提供するために、今後もこのオープン ソース ライブラリを更新し続けると述べました。
関連リンク:
- CurML オープン ソース コード ライブラリのリンク: https://github.com/THUMNLab/CurML
- CurML オープン ソース ソフトウェアの論文リンク: https://dl.acm.org/doi/pdf/10.1145/3503161.3548549
- コース学習の概要論文リンク: https://ieeexplore.ieee.org/abstract/document/9392296/
- コースのメタ学習ペーパーのリンク: https://dl.acm.org/doi/abs /10.1145/ 3447548.3467132
- コース分離学習ペーパーのリンク: https://proceedings.neurips.cc/paper/2021/file/e242660df1b69b74dcc7fde711f924ff-Paper.pdf
- コース ニューラル アーキテクチャ検索論文リンク: https://dl.acm.org/doi/abs/10.1145/3503161.3548271
- #コース難易度適応論文リンク: https:// ojs.aaai.org/index.php/AAAI/article/download/20899/version/19196/20658
以上が清華大学、コース学習用初のオープンソース ライブラリである CurML をリリースの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

FP8 以下の浮動小数点数値化精度は、もはや H100 の「特許」ではありません。 Lao Huang は誰もが INT8/INT4 を使用できるようにしたいと考え、Microsoft DeepSpeed チームは NVIDIA からの公式サポートなしで A100 上で FP6 の実行を開始しました。テスト結果は、A100 での新しい方式 TC-FPx の FP6 量子化が INT4 に近いか、場合によってはそれよりも高速であり、後者よりも精度が高いことを示しています。これに加えて、エンドツーエンドの大規模モデルのサポートもあり、オープンソース化され、DeepSpeed などの深層学習推論フレームワークに統合されています。この結果は、大規模モデルの高速化にも即座に影響します。このフレームワークでは、シングル カードを使用して Llama を実行すると、スループットはデュアル カードのスループットの 2.65 倍になります。 1つ

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

MetaFAIR はハーバード大学と協力して、大規模な機械学習の実行時に生成されるデータの偏りを最適化するための新しい研究フレームワークを提供しました。大規模な言語モデルのトレーニングには数か月かかることが多く、数百、さらには数千の GPU を使用することが知られています。 LLaMA270B モデルを例にとると、そのトレーニングには合計 1,720,320 GPU 時間が必要です。大規模なモデルのトレーニングには、これらのワークロードの規模と複雑さにより、特有のシステム上の課題が生じます。最近、多くの機関が、SOTA 生成 AI モデルをトレーニングする際のトレーニング プロセスの不安定性を報告しています。これらは通常、損失スパイクの形で現れます。たとえば、Google の PaLM モデルでは、トレーニング プロセス中に最大 20 回の損失スパイクが発生しました。数値的なバイアスがこのトレーニングの不正確さの根本原因です。
