目次
動作原理
新しい研究の重要性
ホームページ テクノロジー周辺機器 AI Meta は、パラメータを積み上げたり、時間に依存したりすることなく、ViT トレーニング プロセスを加速し、スループットを 4 倍に向上させます。

Meta は、パラメータを積み上げたり、時間に依存したりすることなく、ViT トレーニング プロセスを加速し、スループットを 4 倍に向上させます。

Apr 09, 2023 am 09:21 AM
モデル 電車

現段階では、ビジュアル トランスフォーマー (ViT) モデルは、画像分類、ターゲット検出、セグメンテーションなどのさまざまなコンピューター ビジョン タスクで広く使用されており、視覚的表現と認識において SOTA の結果を達成できます。コンピューター ビジョン モデルのパフォーマンスはパラメーターの数やトレーニング時間と正の相関があることが多いため、AI コミュニティはますます大規模な ViT モデルを実験してきました。

しかし、モデルがテラフロップスの規模を超え始めているため、この分野ではいくつかの大きなボトルネックが発生していることに注意する必要があります。単一モデルのトレーニングには数か月かかる場合があり、数千の GPU が必要となるため、アクセラレータの要件が増大し、その結果、多くの実践者を排除する大規模な ViT モデルが生成されます。

ViT モデルの使用範囲を拡大するために、メタ AI 研究者はより効率的なトレーニング方法を開発しました。アクセラレータを最適に利用するにはトレーニングを最適化することが非常に重要です。ただし、このプロセスには時間がかかり、かなりの専門知識が必要です。秩序ある実験をセットアップするには、研究者は無数の最適化の中から選択する必要があります。トレーニング セッション中に実行される何百万もの操作のいずれかが非効率によって妨げられる可能性があります。

Meta AI は、画像分類コード ライブラリである PyCls の ViT 実装に一連の最適化を適用することで、 計算効率とストレージ効率を向上できることを発見しました。 PyCI を使用してトレーニングされた ViT モデルの場合、Meta AI のアプローチにより、トレーニング速度とアクセラレータあたりのスループット (TFLOPS) が向上します。

次の図は、最適化されたコード ライブラリ PyCI を使用した V100 ベンチマークと比較したチップあたりのアクセラレータ スループットの相対的な増加を示しています。一方、A100 の最適化アクセラレータ スループットは V100 ベンチマークの 4.05 倍です。

Meta は、パラメータを積み上げたり、時間に依存したりすることなく、ViT トレーニング プロセスを加速し、スループットを 4 倍に向上させます。

動作原理

メタ AI はまず PyCI コード ベースを分析し、トレーニング効率が低い潜在的なソースを特定します。 、最終的にはデジタル形式の選択に焦点を当てます。デフォルトでは、ほとんどのアプリケーションは 32 ビット単精度浮動小数点形式を使用してニューラル ネットワーク値を表します。 16 ビットの半精度形式 (FP16) に変換すると、モデルのメモリ フットプリントと実行時間を削減できますが、多くの場合、精度も低下します。

研究者らは妥協の解決策、つまり混合精度を採用しました。これにより、システムは単精度形式で計算を実行してトレーニングを高速化し、メモリ使用量を削減すると同時に、結果を単精度で保存して精度を維持します。彼らは、ネットワークの一部を手動で半精度に変換するのではなく、数値形式を自動的に切り替える自動混合精度トレーニングのさまざまなモードを実験しました。より高度なモードの自動混合精度は、主に半精度演算とモデルの重みに依存します。研究者が使用するバランスの取れた設定により、精度を犠牲にすることなくトレーニングを大幅にスピードアップできます。

プロセスをより効率的にするために、研究者たちは、FairScale ライブラリの Fully Sharder Data Parallel (FSDP) トレーニング アルゴリズムを最大限に活用し、パラメーター、勾配、オプティマイザーの状態を比較しました。シャーディングされています。 FSDP アルゴリズムを通じて、研究者はより少ない GPU を使用して大規模なモデルを構築できます。さらに、MTA オプティマイザー、プールされた ViT 分類器、およびバッチ秒入力テンソル レイアウトを使用して、冗長な転置操作をスキップしました。

以下の図の X 軸は可能な最適化を示し、Y 軸は ViT でトレーニングした場合の分散データ並列 (DDP) ベンチマークと比較したアクセラレータ スループットの相対的な増加を示しています。 -H/16。

Meta は、パラメータを積み上げたり、時間に依存したりすることなく、ViT トレーニング プロセスを加速し、スループットを 4 倍に向上させます。

研究者らは、パッチの合計サイズが 560 の場合、各アクセラレータ チップでの 1 秒あたりの実行時間の観点から、アクセラレータのスループットが 1.51 倍増加することを達成しました。 . 浮動小数点演算の数によって測定されます。画像サイズを 224 ピクセルから 256 ピクセルに増やすことで、スループットを 1.86 倍に高めることができました。ただし、画像サイズの変更はハイパーパラメーターの変更を意味するため、モデルの精度に影響します。フル FP16 モードでトレーニングすると、相対スループットは 2.18 倍に増加します。精度が低下する場合もありましたが、実験では精度の低下は 10% 未満でした。

以下の図の Y 軸はエポック時間、つまり ImageNet-1K データセット全体における最後のトレーニングの期間です。ここでは、通常 224 ピクセルの画像サイズを使用する既存の構成の実際のトレーニング時間に焦点を当てます。

Meta は、パラメータを積み上げたり、時間に依存したりすることなく、ViT トレーニング プロセスを加速し、スループットを 4 倍に向上させます。

メタ AI 研究者は、最適化スキームを使用して、エポック タイム (ImageNet-1K データセット全体に対する 1 つのトレーニング セッションの継続時間) を 0.65 時間から 0.43 時間に短縮しました。

以下の図の X 軸は、特定の構成における A100 GPU アクセラレータ チップの数を表し、Y 軸はチップあたりの絶対スループットを TFLOPS で表します。

Meta は、パラメータを積み上げたり、時間に依存したりすることなく、ViT トレーニング プロセスを加速し、スループットを 4 倍に向上させます。

この調査では、さまざまな GPU 構成の影響についても説明しています。いずれの場合も、システムは分散データ並列 (DDP) ベースライン レベルよりも高いスループットを達成しました。チップの数が増えると、デバイス間通信のオーバーヘッドによりスループットがわずかに低下することがわかります。ただし、64 個の GPU を使用しても、Meta のシステムは DDP ベンチマークより 1.83 倍高速です。

新しい研究の重要性

ViT トレーニングで達成可能なスループットを 2 倍にすることで、トレーニング クラスターのサイズを効果的に 2 倍にし、アクセラレータの使用率を直接改善できます。 AI モデルの二酸化炭素排出量を削減します。最近の大規模モデルの開発により、モデルが大型化してトレーニング時間が長くなる傾向にあるため、この最適化は研究分野で最先端のテクノロジーをさらに推進し、納期を短縮し、生産性を向上させるのに役立つと期待されています。

以上がMeta は、パラメータを積み上げたり、時間に依存したりすることなく、ViT トレーニング プロセスを加速し、スループットを 4 倍に向上させます。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

オープンソース!ゾーイデプスを超えて! DepthFM: 高速かつ正確な単眼深度推定! オープンソース!ゾーイデプスを超えて! DepthFM: 高速かつ正確な単眼深度推定! Apr 03, 2024 pm 12:04 PM

0.この記事は何をするのですか?私たちは、多用途かつ高速な最先端の生成単眼深度推定モデルである DepthFM を提案します。従来の深度推定タスクに加えて、DepthFM は深度修復などの下流タスクでも最先端の機能を実証します。 DepthFM は効率的で、いくつかの推論ステップ内で深度マップを合成できます。この作品について一緒に読みましょう〜 1. 論文情報タイトル: DepthFM: FastMonocularDepthEstimationwithFlowMatching 著者: MingGui、JohannesS.Fischer、UlrichPrestel、PingchuanMa、Dmytr

世界で最も強力なオープンソース MoE モデルが登場。GPT-4 に匹敵する中国語機能を備え、価格は GPT-4-Turbo のわずか 1% 近くです 世界で最も強力なオープンソース MoE モデルが登場。GPT-4 に匹敵する中国語機能を備え、価格は GPT-4-Turbo のわずか 1% 近くです May 07, 2024 pm 04:13 PM

従来のコンピューティングを超える能力を備えているだけでなく、より低コストでより効率的なパフォーマンスを実現する人工知能モデルを想像してみてください。これは SF ではありません。世界で最も強力なオープンソース MoE モデルである DeepSeek-V2[1] が登場しました。 DeepSeek-V2 は、経済的なトレーニングと効率的な推論の特徴を備えた強力な専門家混合 (MoE) 言語モデルです。これは 236B のパラメータで構成されており、そのうち 21B は各マーカーをアクティブにするために使用されます。 DeepSeek67B と比較して、DeepSeek-V2 はパフォーマンスが優れていると同時に、トレーニング コストを 42.5% 節約し、KV キャッシュを 93.3% 削減し、最大生成スループットを 5.76 倍に高めます。 DeepSeek は一般的な人工知能を研究する会社です

MLP に代わる KAN は、オープンソース プロジェクトによって畳み込みまで拡張されました MLP に代わる KAN は、オープンソース プロジェクトによって畳み込みまで拡張されました Jun 01, 2024 pm 10:03 PM

今月初め、MIT やその他の機関の研究者らは、MLP に代わる非常に有望な代替案である KAN を提案しました。 KAN は、精度と解釈可能性の点で MLP よりも優れています。また、非常に少数のパラメーターを使用して、多数のパラメーターを使用して実行する MLP よりも優れたパフォーマンスを発揮できます。たとえば、著者らは、KAN を使用して、より小規模なネットワークと高度な自動化で DeepMind の結果を再現したと述べています。具体的には、DeepMind の MLP には約 300,000 個のパラメーターがありますが、KAN には約 200 個のパラメーターしかありません。 KAN は、MLP が普遍近似定理に基づいているのに対し、KAN はコルモゴロフ-アーノルド表現定理に基づいているのと同様に、強力な数学的基礎を持っています。以下の図に示すように、KAN は

こんにちは、電気アトラスです!ボストン・ダイナミクスのロボットが復活、180度の奇妙な動きにマスク氏も恐怖 こんにちは、電気アトラスです!ボストン・ダイナミクスのロボットが復活、180度の奇妙な動きにマスク氏も恐怖 Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas は正式に電動ロボットの時代に突入します!昨日、油圧式アトラスが歴史の舞台から「涙ながらに」撤退したばかりですが、今日、ボストン・ダイナミクスは電動式アトラスが稼働することを発表しました。ボストン・ダイナミクス社は商用人型ロボットの分野でテスラ社と競争する決意を持っているようだ。新しいビデオが公開されてから、わずか 10 時間ですでに 100 万人以上が視聴しました。古い人が去り、新しい役割が現れるのは歴史的な必然です。今年が人型ロボットの爆発的な年であることは間違いありません。ネットユーザーは「ロボットの進歩により、今年の開会式は人間のように見え、人間よりもはるかに自由度が高い。しかし、これは本当にホラー映画ではないのか?」とコメントした。ビデオの冒頭では、アトラスは仰向けに見えるように地面に静かに横たわっています。次に続くのは驚くべきことです

AI が数学研究を破壊する!フィールズ賞受賞者で中国系アメリカ人の数学者が上位 11 件の論文を主導 | テレンス・タオが「いいね!」しました AI が数学研究を破壊する!フィールズ賞受賞者で中国系アメリカ人の数学者が上位 11 件の論文を主導 | テレンス・タオが「いいね!」しました Apr 09, 2024 am 11:52 AM

AI は確かに数学を変えつつあります。最近、この問題に細心の注意を払っている陶哲軒氏が『米国数学協会会報』(米国数学協会会報)の最新号を送ってくれた。 「機械は数学を変えるのか?」というテーマを中心に、多くの数学者が意見を述べ、そのプロセス全体は火花に満ち、ハードコアで刺激的でした。著者には、フィールズ賞受賞者のアクシャイ・ベンカテシュ氏、中国の数学者鄭楽軍氏、ニューヨーク大学のコンピューター科学者アーネスト・デイビス氏、その他業界で著名な学者を含む強力な顔ぶれが揃っている。 AI の世界は劇的に変化しています。これらの記事の多くは 1 年前に投稿されたものです。

超知性の生命力が覚醒する!しかし、自己更新 AI の登場により、母親はデータのボトルネックを心配する必要がなくなりました。 超知性の生命力が覚醒する!しかし、自己更新 AI の登場により、母親はデータのボトルネックを心配する必要がなくなりました。 Apr 29, 2024 pm 06:55 PM

世界は狂ったように大きなモデルを構築していますが、インターネット上のデータだけではまったく不十分です。このトレーニング モデルは「ハンガー ゲーム」のようであり、世界中の AI 研究者は、データを貪欲に食べる人たちにどのように餌を与えるかを心配しています。この問題は、マルチモーダル タスクで特に顕著です。何もできなかった当時、中国人民大学学部のスタートアップチームは、独自の新しいモデルを使用して、中国で初めて「モデル生成データフィード自体」を実現しました。さらに、これは理解側と生成側の 2 つの側面からのアプローチであり、両方の側で高品質のマルチモーダルな新しいデータを生成し、モデル自体にデータのフィードバックを提供できます。モデルとは何ですか? Awaker 1.0 は、中関村フォーラムに登場したばかりの大型マルチモーダル モデルです。チームは誰ですか?ソフォンエンジン。人民大学ヒルハウス人工知能大学院の博士課程学生、ガオ・イージャオ氏によって設立されました。

Kuaishou バージョンの Sora「Ke Ling」がテスト用に公開されています。120 秒以上のビデオを生成し、物理学をより深く理解し、複雑な動きを正確にモデル化できます。 Kuaishou バージョンの Sora「Ke Ling」がテスト用に公開されています。120 秒以上のビデオを生成し、物理学をより深く理解し、複雑な動きを正確にモデル化できます。 Jun 11, 2024 am 09:51 AM

何?ズートピアは国産AIによって実現するのか?ビデオとともに公開されたのは、「Keling」と呼ばれる新しい大規模な国産ビデオ生成モデルです。 Sora も同様の技術的ルートを使用し、自社開発の技術革新を多数組み合わせて、大きく合理的な動きをするだけでなく、物理世界の特性をシミュレートし、強力な概念的結合能力と想像力を備えたビデオを制作します。データによると、Keling は、最大 1080p の解像度で 30fps で最大 2 分の超長時間ビデオの生成をサポートし、複数のアスペクト比をサポートします。もう 1 つの重要な点は、Keling は研究所が公開したデモやビデオ結果のデモンストレーションではなく、ショートビデオ分野のリーダーである Kuaishou が立ち上げた製品レベルのアプリケーションであるということです。さらに、主な焦点は実用的であり、白紙小切手を書かず、リリースされたらすぐにオンラインに移行することです。Ke Ling の大型モデルは Kuaiying でリリースされました。

アメリカ空軍が初のAI戦闘機を公開し注目を集める!大臣はプロセス全体を通じて干渉することなく個人的にテストを実施し、10万行のコードが21回にわたってテストされました。 アメリカ空軍が初のAI戦闘機を公開し注目を集める!大臣はプロセス全体を通じて干渉することなく個人的にテストを実施し、10万行のコードが21回にわたってテストされました。 May 07, 2024 pm 05:00 PM

最近、軍事界は、米軍戦闘機が AI を使用して完全自動空戦を完了できるようになったというニュースに圧倒されました。そう、つい最近、米軍のAI戦闘機が初めて公開され、その謎が明らかになりました。この戦闘機の正式名称は可変安定性飛行シミュレーター試験機(VISTA)で、アメリカ空軍長官が自ら飛行させ、一対一の空戦をシミュレートした。 5 月 2 日、フランク ケンダル米国空軍長官は X-62AVISTA でエドワーズ空軍基地を離陸しました。1 時間の飛行中、すべての飛行動作が AI によって自律的に完了されたことに注目してください。ケンダル氏は「過去数十年にわたり、私たちは自律型空対空戦闘の無限の可能性について考えてきたが、それは常に手の届かないものだと思われてきた」と語った。しかし今では、

See all articles